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SCIENCE IN CONSTRUCTION – SELECTED PROBLEMS

Application of  
machine learning classifiers  

to elastic wave signal analysis and 
diagnostics of bolted joints

Zastosowanie klasyfikatorów uczenia maszynowego do analizy 
sygnałów fal sprężystych oraz diagnostyki połączeń śrubowych

Streszczenie: Badaniom poddano laboratoryjny model ramy por-
talowej. Do wzbudzania i pomiaru fal sprężystych zastosowano 
przetworniki piezoelektryczne. W rezultacie zebrano 2100 wzor-
ców różnych scenariuszy stanu połączenia (7 klas). Następnie 
zbudowano wielopoziomowy system diagnostyczny do wykry-
wania i klasyfikacji usterek. Po jego wytrenowaniu możliwe było 
uzyskanie bezbłędnych wyników klasyfikacji, co stanowi alter-
natywę dla wcześniej stosowanych w tym zadaniu podejść SSN, 
ANN. Ponadto wykazano, że istotność składników głównych nie 
jest tożsama z unormowaną ich kolejnością.
Słowa kluczowe: badania nieniszczące; propagacja fal sprężystych; 
modele klasyfikacji; uczenie maszynowe; analiza wrażliwości.

Abstract: A laboratory model of a portal frame was tested. 
Piezoelectric transducers were used to excite and measure elastic 
waves. As a result, 2,100 patterns were collected for various 
connection state scenarios (7 classes). Subsequently, a multi­
‍‑level diagnostic system for fault detection and classification 
was developed. After training, it achieved flawless classification 
results, offering an alternative to previously applied approaches 
for this task SSN, ANN. Furthermore, it was demonstrated that 
the significance of the principal components does not correspond 
to their normalised order.
Keywords: non‍‑destructive tests; elastic wave propagation; 
classification models; machine learning; sensitivity analysis.
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Usterki w połączeniach śrubowych zagrażają trwałości 
i bezpieczeństwu konstrukcji inżynierskich. Zmniej-
szenie docisku śrub prowadzi do lokalnego zmniej-
szenia sztywności oraz redystrybucji sił wewnętrz-

nych, co w skrajnych przypadkach może skutkować lokalnym 
uszkodzeniem lub awarią konstrukcji [1÷4]. Wczesne wykry-
wanie tego typu nieciągłości konstrukcyjnych jest kluczowe 
do zapewnienia niezawodności obiektów i wspomaga plano-
wanie prac serwisowych. W związku z tym szczególne znacze-
nie mają metody diagnostyki nieniszczącej (NDT) i systemy 
monitorowania stanu konstrukcji (SHM), które pozwalają na 
ocenę stanu technicznego wybranych elementów, a nawet ca-
łych konstrukcji inżynierskich [5, 6].

Jedną z technik NDT jest analiza zjawiska propagacji fal 
sprężystych [7]. Fale poruszają się na powierzchni materiału 
lub przenikają przez jego objętość i są wrażliwe na zmianę 
sztywności, pęknięcia, ubytki i inne defekty. Ich zaletą jest 
możliwość wykrywania uszkodzeń na dużą odległość od miej-
sca przyłożenia wzbudzenia. Fale oddziałują z geometrią kon-
strukcji i nieciągłościami materiałowymi, co umożliwia ich wy-
korzystanie także w diagnostyce połączeń śrubowych.

W celu skutecznego wykorzystania sygnałów pomiarowych 
w diagnostyce, konieczne jest ich odpowiednie przetwarzanie. 
Pomimo zastosowania filtracji cyfrowej, dane pomiarowe czę-
sto pozostają złożone i wielowymiarowe. W związku z tym 
stosuje się metody redukcji wymiarowości, np. analizę skład-
ników głównych (PCA) [8, 9], które pozwalają na przekształ-

Defects in bolted connections constitute a  signifi-
cant threat to the durability and safety of engineer-
ing structures. A reduction in bolt pretension leads 
to a local decrease in stiffness and a redistribution 

of internal forces, which in extreme cases may result in lo-
cal damage or even structural failure [1÷4]. Early detection 
of such discontinuities is crucial for ensuring the reliability of 
structures and supports effective maintenance planning. In this 
context, non-destructive testing (NDT) methods and structural 
health monitoring (SHM) systems play aa important role, as 
they allow for the assessment of the technical condition of se-
lected components or even entire engineering structures [5, 6].

One of the NDT techniques is the analysis of elastic wave 
propagation [7]. These waves propagate along the surface of 
an monitored element or penetrate its volume and are sensitive 
to changes in stiffness, cracks, material loss, and other defects. 
A notable advantage of this method is its capability to detect 
damage at a considerable distance from the point of excitation. 
Elastic waves interact with the geometry of the structure and 
with material discontinuities, which also enables their appli-
cation in the diagnosis of bolted connections.

For effective utilization in diagnostics of measured signals, 
their appropriate processing is required. Despite the use of digi-
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cenie zbioru cech do mniejszej liczby zmiennych niepowią-
zanych statystycznie, z zachowaniem jak największej liczby 
informacji zawartych w oryginalnych danych.

Od wielu lat szerokie zastosowanie w diagnostyce kon-
strukcji znajdują metody uczenia maszynowego, szczegól-
nie klasyfikatory uczące się na podstawie danych wejściowych. 
W ramach nadzorowanego uczenia maszynowego możliwe jest 
tworzenie modeli umożliwiających rozpoznawanie wzorców 
związanych z określonymi stanami konstrukcji. Szczególnie 
efektywne w tego typu zastosowaniu okazują się maszyny 
wektorów wspierających (SVM) oraz różne typy sztucznych 
sieci neuronowych (ANN, SNN) [10÷14], które umożliwiają 
klasyfikację nawet w przypadku nieliniowych granic decyzyj-
nych i dużej liczby klas.

Opis modelu
Analizowany model laboratoryjny dwukondygnacyjnej sta-

lowej ramy portalowej oraz szczegóły połączenia pokazano 
na rysunku 1. Wszystkie słupy i rygle wykonano z kształtow-
ników IPE 80 (h = 80 mm, b = 46 mm tw = 3,8 mm, tf = 5,2 
mm) ze stali S235. Roztaw słupów wynosi 160 cm, a łączna 
wysokość ramy 172 cm. Połączenia rygli ze słupami wyko-
nano ze pomocą czterech rzędów śrub M8 klasy 8.8. Blachy 
podstawy słupów połączono z podłogą przegubowo dwiema 
śrubami M20 klasy 10.9. Zestaw pomiarowy do wymuszenia 
i rejestracji fal sprężystych został zamontowany na ryglu dol-
nym. Składał się on z dwóch przetworników piezoelektrycz-
nych (Noliac CMAP6, 3×3×x2 mm), przyklejonych do środ-
nika (wzbudnik C1 i odbiornik C2), umieszczonych w odle-
głości ok. 16 cm od lewego połączenia.

Analizowane schematy stanu połączenia belki ze słupem 
pokazano na rysunku 1c. Stan odniesienia (BU) oznacza, że 
wszystkie śruby w połączeniach są prawidłowo dokręcone tą 
samą wielkością momentu obrotowego (~20 Nm), kontrolo-
wanego kluczem dynamometrycznym. Uwzględnione zmiany 
w dokręcaniu symulowano przez poluzowanie wybranych śrub 
(puste kółka na schemacie). Były one małe i niewidoczne go-
łym okiem.

tal filtering, measurement data often remain complex and mul-
tidimensional. Consequently, dimensionality reduction meth-
ods, such as Principal Component Analysis (PCA) [8, 9], are 
employed to transform the set of features into a smaller number 
of statistically uncorrelated variables while preserving as much 
information as possible from the original dataset.

Machine learning methods, particularly classifiers trained on 
input data, have been widely applied in structural diagnostics 
for many years. Within supervised machine learning, it is pos-
sible to develop models capable of recognizing patterns asso-
ciated with specific structural states. Particularly effective for 
such applications are Support Vector Machines (SVM) and vari-
ous types of artificial neural networks (ANN, SNN) [10÷14], 
which enable classification even in cases of nonlinear decision 
boundaries and a large number of classes.

Description of the model studied
The laboratory model analyzed in this study consists of 

a two-story steel portal frame. Its dimensions and connections 
details are shown in Figure 1. All columns and beams were fab-
ricated using IPE 80 sections (height = 80 mm, flange width = 
46 mm, web thickness = 3.8 mm, flange thickness = 5.2 mm) 
made of S235 steel. The axial spacing between the columns 
is 160 cm, and the total height of the frame is 172 cm. The 
beam-to-column connections were assembled using four rows 
of M8 bolts of grade 8.8. The base plates of the columns were 
connected to the floor via pinned connections using two M20 
bolts of grade 10.9. The measurement system for generating 
and recording elastic waves was mounted on the lower beam. 
It consisted of two piezoelectric transducers (Noliac CMAP6, 
3×3×2 mm) bonded to the web (transmitter C1 and receiver 
C2), positioned approximately 16 cm from the left connection.

The analyzed beam-to-column connection states are illus-
trated in Figure 1c. The reference state (BU) represents the 
condition in which all bolts in the connections are properly 
tightened with the same torque (~20 Nm), controlled using 
a torque wrench. Variations in bolt tightening were simulated 
by loosening selected bolts (indicated as empty circles in the 

Fig. 1. Laboratory model of the steel frame: a) position of the piezoelectric transducers and analyzed connections, b) connection dia-
gram, c) simulated fault cases (open circles indicate loose screws)
Rys. 1. Laboratoryjny model ramy stalowej: a) położenie przetworników piezoelektrycznych i analizowanych połączeń; b) schemat połączenia; 
c) symulowane przypadki usterek (puste kółka oznaczają poluzowane śruby)
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Przeprowadzono trzy niezależne serie pomiarów (S1 do S3) 
w przypadku lewego (LD) i prawego (PD) połączenia rygla. 
W każdym scenariuszu symulowanej usterki zarejestrowano 50 
sygnałów w odstępach co 200 ms. Posłużył do tego układ po-
miarowy, w skład którego wchodził generator sygnału, wzmac-
niacz liniowy oraz oscyloskop cyfrowy. Pozwoliło to na ze-
branie przez odbiornik C2 2100 wzorców (70×500×30×2): 
1050 związanych z poluzowaniem śrub w połączeniu lewym 
i 1050 w przypadku połączenia prawego. Pomiary zrealizo-
wano w warunkach laboratoryjnych w temperaturze pokojowej 
i bez istotnych jej wahań. Przykładowy sygnały fal sprężystych 
zarejestrowany przez czujnik C2 w przypadku stanu odniesie-
nia (BU) oraz obliczoną wariancję sygnałów dla całego zbioru 
wzorców przedstawiono na rysunku 2. Liniami przerywanymi 
oznaczono fragment sygnału, w przypadku którego wyzna-
czono składniki główne w celu zredukowania wymiarowości 
zadania. Uwzględnia on przejście sygnału przez cały rygiel 
i jego powrót do punktu pomiarowego C2 (założono, że niesie 
on informacje o stanie obu połączeń). Wyznaczone składniki 
główne (16) posłużyły do trenowania algorytmu klasyfikacji.

Wykrywanie i klasyfikacja stanu połączenia
Idea systemu diagnostycznego bazującego na analizie sygna-

łów fal sprężystych zarejestrowanych w modelu laboratoryjnym 
stalowej ramy portalowej została przedstawiona na rysunku 3. 
Jest to typowe podejście stosowane w diagnostyce konstrukcji 
inżynierskich, które można zastosować m.in. w przypadku wy-
krywania usterek, anomalii i uszkodzeń [13, 15÷17].

Założeniem prowadzonych prac było zbadanie możliwości 
wnioskowania o stanie analizowanych połączeń na podstawie 
wyników uzyskanych z modeli klasyfikatorów maszynowych 

diagram). These loosened screws remained in place and the 
simulated anomaly was not visible to the naked eye.

Three independent measurement series (S1 to S3) were con-
ducted for the left (LD) and right (PD) beam-to-column con-
nections. In each simulated damage scenario, 50 signals were 
recorded at intervals of 200 ms using a measurement setup that 
included a signal generator, a linear amplifier, and a digital os-
cilloscope. This allowed to collect 2100 measurement patterns 
(7×50×3×2) using the receiver C2: 1050 patterns for the left 
connection and 1050 patterns with respect to the right connec-
tion (for normal and damaged condition). The measurements 
were performed under laboratory conditions at room tempera-
ture with no significant its fluctuations. An example of an elas-
tic wave signal recorded by sensor C2 in the reference state 
(BU), as well as the calculated variance of the signals for the 
entire pattern set, are presented in Figure 2. The dashed lines 
indicate the segment of the signal used to extract the princi-
pal components for dimensionality reduction. This segment 
includes the passage of the wave through the entire beam and 
its return to the measurement point C2 (it is assumed that this 
segment carries information about the condition of both con-
nections). The determined principal components (from 7 to 16) 
were used to train the classification algorithm.
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Fig. 2. Comparison of signals for the undamaged BU and faulted 
(WG) states at the left node (a) and variance calculated for the en-
tire set of signals – at the left and right nodes (b)
Rys. 2. Porównanie sygnałów w przypadku stanu bez uszkodzenia BU 
i z usterką WG w lewym węźle (a) oraz wariancja obliczona w przy-
padku całego zbioru sygnałów – w węźle lewym i prawym (b)

Fig. 3. The idea of ​​a fault detection system for bolted connections 
of engineering structures
Rys. 3. Idea systemu wykrywania usterek w połączeniach śrubowych 
konstrukcji inżynierskich
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The concept of a diagnostic system based on the analysis of 
elastic wave signals recorded in the laboratory model of a steel 
portal frame is presented in Figure 3. This represents a typical 
approach employed in engineering structure diagnostics, applica-
ble for detection of faults, anomalies, and damages [13, 15÷17].
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Fig. 4. Example results of pattern classification: a) stage A – no fault condition (0), fault in the left connection (1), fault in the right con-
nection (2), b) stage B – assigning patterns to one of the 7 classes (0‍‑BU, 1‍‑G1, 2‍‑GD, 3‍‑D1, 4‍‑WD, 5‍‑WO, 6‍‑WG)
Rys. 4. Przykładowe wyniki klasyfikacji wzorców: a) etap A – stan bez usterki (0), usterka w połączeniu lewym (1), usterka w połączeniu prawym 
(2); b) etap B – przypisanie wzorcom jednej z 7 klas (0‍‑BU, 1‍‑G1, 2‍‑GD, 3‍‑D1, 4‍‑WD, 5‍‑WO, 6‍‑WG)

dostępnych w środowisku Matlab Apps (Classifiaction Lear-
ner). Jest to rozwiązanie typu „no‍‑code”, pozwalające anali-
zować dane pomiarowe i budować systemy wnioskowania bez 
potrzeby zaawansowanej znajomości algorytmów uczenia ma-
szynowego i programowania.

Przygotowanie danych do trenowania klasyfikatorów wy-
magało zdefiniowania zbiorów danych do ich uczenia i testo-
wania. Po analizie wstępnych wyników klasyfikacji zrezygno-
wano z pomniejszania danych uczących i wyodrębniania z nich 
zbioru walidującego, którego głównym celem było przeciw-
działanie zjawisku nadmiernego dopasowania się klasyfikatora 
do wzorców uczących – nie spowodowało to istotnego pogor-
szenia się wyników testowania. W związku z tym zbiór wa-
lidujący był w tym przypadku tożsamy ze zbiorem uczącym. 
Natomiast przedstawione wyniki dotyczą jedynie testowania 
nauczonego klasyfikatora za pomocą zbioru danych, który nie 
brał udziału w procesie jego weryfikacji. Przyjęto, że klasy-
fikacja zostanie przeprowadzona dwuetapowo. W pierwszym 
etapie rozdzielono wzorce na 3 klasy: stan bez usterki, usterka 
w lewym połączeniu, usterka w prawym połączeniu, którym 
przypisano etykiety {0, 1, 2}. Następnie do uczenia wybrano 
dane związane z seriami pomiarowymi S1 i S2, a do testowa-
nia serię S3. Wynikają z tego następujące proporcje podziału 
na wzorce do uczenia (2/3, łącznie 1400) i testowania (1/3, 
łącznie 700). W tym etapie można zatem uzyskać informację, 
czy w połączeniach występuje usterka związana z obluzowa-
niem śrub, a jeśli tak, to w którym połączeniu (z lewej czy pra-
wej strony rygla). W etapie drugim, do weryfikacji algorytmu 
klasyfikacji, wzorce rozdzielono na 2 niezależne podzbiory – 
osobno w przypadku zmian w lewym i prawym połączeniu. 
Na tej podstawie wytrenowano dwa klasyfikatory, których 
zadaniem ma być dokładniejsza klasyfikacja stanu połączeń 
z przypisaniem jednej z założonych wcześniej klas (1‒6). Na 
wypadek pojawienia się tzw. fałszywych alarmów, do trenowa-
nia dodano także wzorce stanu bez uszkodzenia (0). Przykład 
wyników testowania, które dotyczą nieliniowego klasyfikatora 
SVM (wynik w przypadku wąskiej sieci neuronowej 16‒10‒1 
był identyczny) przedstawiono na rysunku 4. Zastosowanie 

The main objective of this study was to investigate the fea-
sibility of inferring the condition of the analyzed bolted con-
nections based on the results obtained from machine learning 
classifiers available within the Matlab Apps environment (Clas-
sification Learner). This is a “no-code” solution that enables 
the analysis of measurement data and the development of in-
ference systems without the need for advanced knowledge of 
machine learning algorithms and programming.

Data preparation for training the classifiers required defining 
datasets for training and testing. Based on preliminary classi-
fication results, it was decided not to reduce the training data 
and extracting a validation set from it (primary purpose of that 
solution is to mitigate classifier overfitting to training patterns). 
This decision did not significantly worsen the testing perfor-
mance. Therefore, in this case, the validation set was identical 
to the training set. The presented results pertain solely to test-
ing the trained classifier using a dataset that was not involved 
in its training. It was also assumed, that a two-stage classifica-
tion procedure is adopted. In the first stage, the patterns were 
divided into three classes: no damage, damage in the left con-
nection, and damage in the right connection. The assigned la-
bels were {0, 1, 2}, respectively. For the training process, data 
from measurement series S1 and S2 were used, while series 
S3 was employed for testing. This resulted in a data split of 
2/3 for training (a total of 1,400 patterns) and 1/3 for testing 
(700 patterns). This stage enables determining whether a con-
nection is damaged (bolt loosening appeared) and identifying 
which connection is affected (left or right). In the second stage, 
to verify the classification algorithm, the patterns were divided 
into two independent subsets – one for the left connection and 
one for the right connection. Two separate classifiers were 
trained, whose task was to provide a more detailed classifica-
tion of the connection state by assigning one of the predefined 
classes (1÷6). To account for potential false alarms, patterns 
representing the undamaged state (0) were also included in 
the training process. An example of the testing results for the 
quadratic SVM classifier (results for the narrow neural network 
16–10–1 were identical) is presented in Figure 4. The appli-
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liniowego klasyfikatora SVM pozwoliło uzyskać dokładność 
na poziomie 99,7%.

W tabeli 1 zestawiono wyniki klasyfikacji w odniesieniu do 
wektorów wejściowych mniejszej długości. Kolejność danych 
ustalona została na podstawie wyników algorytmu MRMR (Mi-
nimum Redundancy Maximum Relevance), dostępnego w Mat-
lab App. Istotność danych jest różna, w porównaniu z unormo-
waniem wynikającym z analizy PCA (tabela 2). Wynika to praw-
dopodobnie z charakteru przyjętej metody kompresji sygnału, 
ponieważ każdy kolejny składnik główny zawiera statystycznie 
istotne informacje o powtarzalnych cechach danego sygnału, na-
tomiast ich związek z liczbą zdefiniowanych klas jest inny, niż 
wynika to z uzyskanej kolejności. Natomiast zmienność wyni-
ków w przypadku klasyfikacji liniowej SVM może wskazywać, 
że niektóre z nich nie dostarczają informacji, przydatnych w ana-
lizowanym problemie wykrywania usterek w połączeniach.

cation of the linear SVM classifier achieved an accuracy of 
99.7%. Table 1 summarizes the classification results also with 
respect to the input vectors with lower numbers of elements. 
The feature order was established based on the results of the 
MRMR (Minimum Redundancy Maximum Relevance) algo-
rithm available in Matlab Apps. The significance of the fea-
tures varies compared to the normalization derived from PCA 
analysis (Table 2). This likely results from the adopted signal 
compression method, since each subsequent principal compo-
nent statistically contains relevant information about the recur-
ring features of a given signal, whereas their relationship with 
the number of defined classes differs from the order yielded 
by the feature ranking. The observed variability in classifica-
tion performance using the linear SVM classifier suggests that 
some of the features may not provide useful information for the 
problem of detecting faults in bolted connections.
Table 1. Classification testing results (accuracy [%]) at stage A for different numbers of parameters in the input vector – order of prin-
cipal components determined based on the MRMR algorithm.
Tabela 1. Wyniki testowania klasyfikacji (dokładność [%]) na etapie A w przypadku różnej liczby parametrów w wektorze wejściowym – kolejność 
składników głównych ustalona została na podstawie algorytmu MRMR

Liczba elementów wektora wejściowego 7 8 9 10 11 12 13 14 15 16

Model liniowy SVM 78,7% 92,9% 98,4% 93,7% 93,7% 85,9% 86,0% 91,6% 99,1% 99,7%

Model nieliniowy SVM 84,1% 88,1% 100% 100% 100% 100% 100% 99,9% 100% 100%

Table 2. The significance of the input data features (principal components) sorted by the PCA and MRMR algorithm
Tabela 2. Istotność cech danych wejściowych (składników głównych) posortowana wg algorytmu PCA i MRMR

Algorytm Numery składników głównych posortowane wg ich istotności

PCA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MRMR etap A 3 6 15 11 1 8 9 5 16 4 2 12 10 7 13 14

MRMR etap B 4 11 13 1 8 3 15 6 9 12 2 5 16 7 14 10

Figure 4b presents the classification results from stage B 
(testing only), in which, to each fault scenario the appropriate 
class was assigned. For the left connection, perfect fault clas-
sification was achieved even with only seven principal com-
ponents, selected based on importance factor taken from the 
MRMR analysis. Whereas for the right connection, more than 
twelve components were required. From the presented plots, it 
is also possible to infer information about the number of pat-
terns assigned to each class in the testing set (in the training 
phase, the number of patterns was twice as large).

Summary and Conclusions
The presented study is an example of the potential applica-

tions of machine learning in civil engineering, such as support-
ing decision-making processes in maintenance and inspection 
planning. In addition to the presented task of pattern classifica-
tion, tasks related to parameter prediction (e.g., material prop-
erties, the location and size of damage), known as regression, 
also play a significant role in structural condition assessment 
systems. Matlab Apps offer a wide range of tools (e.g., neural 
networks, support vector machines, regression trees, Gaussian 

Na rysunku 4b przedstawiono wynik klasyfikacji w eta-
pie B, który polegał na przypisaniu usterce właściwej klasy. 
W przypadku lewego połączenia bezbłędną klasyfikację usterek 
uzyskano już przy siedmiu składnikach głównych wybranych 
zgodnie z istotnością wynikającą z analizy MRMR, natomiast 
w przypadku prawego węzła powyżej dwunastu składników. 
Z przedstawionych wykresów można także odczytać informa-
cję o liczebności wzorców przypisanych do poszczególnych 
klas w zbiorze testującym (w przypadku uczenia liczebność 
wzorców była dwukrotnie większa).

Podsumowanie i wnioski
Przedstawione zagadnienie jest jednym z przykładów możli-

wego zastosowania uczenia maszynowego w inżynierii lądowej, 
np. w celu wspomagania procesu podejmowania decyzji w plano-
waniu napraw i przeglądów. Poza przedstawionym zadaniem kla-
syfikacji wzorców, równie istotną rolę w systemach oceny stanu 
konstrukcji stanowią zadania związane z predykcją parametrów 
(np. materiałowych, położenia i wielkości uszkodzeń), czyli tzw. 
regresją. Matlab Apps oferują dużą gamę rozwiązań (m.in. sieci 
neuronowe, maszyny wektorów wspierających, drzewa regresji, 
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procesy Gausowskie), wspomagających inżynierów i naukowców 
w testowaniu ich możliwości w różnych obszarach zastosowań.

Przeprowadzona analiza cech składników głównych z wyko-
rzystaniem algorytmu MRMR wniosła nową wiedzę na temat 
istotności zawartych w nich informacji, zwłaszcza z punktu wi-
dzenia zadań klasyfikacji i regresji. W trakcie przeprowadzo-
nej analizy danych testowano także inne tego typu rozwiązania 
dostępne w Matlab App (ReliefF, ANOVA, Kruskal-Wallis). 
Mimo że uzyskane w ten sposób wyniki prowadziły do innej 
kolejności składników głównych w rankingu ich istotności, 
ostatecznie zdecydowano się na ograniczenie przedstawionych 
wyników jedynie do MRMR. Ponadto zauważono, że włącze-
nie do analizy większej liczby składników głównych (np. 50) 
powoduje przesunięcie dalszych składników głównych na wyż-
sze pozycje rankingu. Zagadnienie to wymaga szerszej analizy 
i będzie stanowić kolejny etap badań w zakresie zagadnień 
związanych z kompresją sygnałów czasowych i przydatnoś-
cią uzyskanych cech w zadaniach wykorzystujących zjawisko 
propagacji fal sprężystych oraz uczenie maszynowe.

Model, który posłużył do przeprowadzenia badań doświad-
czalnych, ma pewne ograniczenia. Zaliczyć do nich można nie-
wielkie wymiary konstrukcji (160×172 cm), przekroju poprzecz-
nego (IPE80) oraz śrub (M8). W rezultacie zmiany wprowadzane 
w prawym połączeniu (PD) miały wpływ na sygnały mierzone 
w pobliżu węzła lewego (LD). W związku z tym planowane jest 
rozszerzenie przedstawionego podejścia o możliwość uczenia 
i testowania algorytmu diagnostycznego na danych, które doty-
czą niezależnych od siebie połączeń. Wymaga to jednak prze-
prowadzenia dodatkowych pomiarów, w których rygiel zmienia 
swoje położenie (np. jest obracany lub przenoszony na wyższy 
poziom) wraz z zestawem pomiarowym (2 przetworniki piezo-
elektryczne). Pozwoli to sprawdzić, czy możliwe jest uzyskanie 
zdolności generalizacyjnych takiego układu diagnostycznego, 
zakładając, że uczenie jest przeprowadzane na danych pocho-
dzących z jednego lub dwóch połączeń, a testowanie na danych 
zarejestrowanych dla innego połączenia. Jest to podejście od-
mienne od przedstawionego w artykule, ale bliższe rzeczywistym 
warunkom pracy systemów monitorowania stanu konstrukcji. Po-
zwoli to uzyskać nową wiedzę na temat możliwości skalowania 
zaproponowanego podejścia i potencjalnego jego zastosowania.

Warto wspomnieć, że zmierzone sygnały fal sprężystych we 
wszystkich analizowanych scenariuszach usterek nie uwzględ-
niają możliwości występowania w konstrukcji obciążeń zmien-
nych. Jest to jedno z zagadnień wymagających dalszych badań 
w celu sprawdzenia zaproponowanego podejścia w warunkach 
zbliżonych do rzeczywistej pracy konstrukcji.

processes) that assist engineers and researchers in exploring 
their capabilities across various application areas.

The analysis of the principal component features using the 
MRMR algorithm provided new insights into the significance 
of the information contained therein, especially from the per-
spective of classification and regression tasks. During the data 
analysis, other such solutions available in Matlab Apps were 
also analyzed (ReliefF, ANOVA, Kruskal-Wallis). Although the 
results obtained in this way led to a different ranking order of 
the principal components in terms of their importance, it was 
ultimately decided to limit the presented results to MRMR only. 
Additionally, it was observed that including a larger number 
of principal components (e.g. 50) caused the later components 
to shift to higher positions in the ranking. This issue requires 
further analysis and will constitute the next stage of research 
concerning signal compression problems and the usefulness of 
the obtained features in tasks involving elastic wave propaga-
tion and machine learning.

The model used for the experimental studies has certain lim-
itations. These include the small dimensions of the structure 
(160×172 cm), the cross-section (IPE80), and the bolts (M8). 
As a result, changes introduced in the right connection (PD) af-
fected the signals measured near the left joint (LD). Therefore, 
it is planned to extend the presented approach to include the 
capability of training and testing the diagnostic algorithm us-
ing data related to independently behaving connections. How-
ever, this requires additional measurements, in which the beam 
changes its position (e.g., is rotated or moved to a higher level) 
along with the measurement setup (two piezoelectric transduc-
ers). This will allow verification of whether it is possible to 
obtain generalization capabilities of such a diagnostic system, 
assuming that training is carried out on data from one or two 
connections and testing on data recorded from another con-
nection. This approach differs from the one presented in this 
article but is closer to the actual operating conditions of struc-
tural health monitoring systems. It will provide new insights 
into the scalability of the proposed approach and its potential 
applications.

It is also worth mentioning that the measured elastic wave 
signals in all analyzed fault scenarios do not account for the 
possibility of variable loads occurring in the structure. This is 
one of the issues requiring further research to verify the pro-
posed approach under conditions closer to real–world struc-
tural operation.
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