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Abstract: A laboratory model of a portal frame was tested.
Piezoelectric transducers were used to excite and measure elastic
waves. As a result, 2,100 patterns were collected for various
connection state scenarios (7 classes). Subsequently, a multi-
-level diagnostic system for fault detection and classification
was developed. After training, it achieved flawless classification
results, offering an alternative to previously applied approaches
for this task SSN, ANN. Furthermore, it was demonstrated that
the significance of the principal components does not correspond
to their normalised order.

Keywords: non-destructive tests; elastic wave propagation;
classification models; machine learning; sensitivity analysis.

efects in bolted connections constitute a signifi-
cant threat to the durability and safety of engineer-
ing structures. A reduction in bolt pretension leads
to a local decrease in stiffness and a redistribution
of internal forces, which in extreme cases may result in lo-
cal damage or even structural failure [1+4]. Early detection
of such discontinuities is crucial for ensuring the reliability of
structures and supports effective maintenance planning. In this
context, non-destructive testing (NDT) methods and structural
health monitoring (SHM) systems play aa important role, as
they allow for the assessment of the technical condition of se-
lected components or even entire engineering structures [5, 6].
One of the NDT techniques is the analysis of elastic wave
propagation [7]. These waves propagate along the surface of
an monitored element or penetrate its volume and are sensitive
to changes in stiffness, cracks, material loss, and other defects.
A notable advantage of this method is its capability to detect
damage at a considerable distance from the point of excitation.
Elastic waves interact with the geometry of the structure and
with material discontinuities, which also enables their appli-
cation in the diagnosis of bolted connections.
For effective utilization in diagnostics of measured signals,
their appropriate processing is required. Despite the use of digi-
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Streszczenie: Badaniom poddano laboratoryjny model ramy por-
talowej. Do wzbudzania i pomiaru fal sprezystych zastosowano
przetworniki piezoelektryczne. W rezultacie zebrano 2100 wzor-
cow roznych scenariuszy stanu potaczenia (7 klas). Nastgpnie
zbudowano wielopoziomowy system diagnostyczny do wykry-
wania i klasyfikacji usterek. Po jego wytrenowaniu mozliwe byto
uzyskanie bezblgdnych wynikow klasyfikacji, co stanowi alter-
natywe dla wezesniej stosowanych w tym zadaniu podejs¢ SSN,
ANN. Ponadto wykazano, ze istotno$¢ sktadnikéw glownych nie
jest tozsama z unormowang ich kolejnoscia.

Stowa kluczowe: badania nieniszczace; propagacja fal sprezystych;
modele klasyfikacji; uczenie maszynowe; analiza wrazliwosci.

sterki w polgczeniach srubowych zagrazajg trwatosci

i bezpieczenstwu konstrukcji inzynierskich. Zmniej-

szenie docisku $rub prowadzi do lokalnego zmniej-

szenia sztywnosci oraz redystrybucji sit wewngtrz-
nych, co w skrajnych przypadkach moze skutkowaé lokalnym
uszkodzeniem lub awarig konstrukcji [ 1+4]. Wczesne wykry-
wanie tego typu niecigglosci konstrukcyjnych jest kluczowe
do zapewnienia niezawodnos$ci obiektow i wspomaga plano-
wanie prac serwisowych. W zwiazku z tym szczegodlne znacze-
nie maja metody diagnostyki nieniszczacej (NDT) i systemy
monitorowania stanu konstrukcji (SHM), ktore pozwalajg na
oceng stanu technicznego wybranych elementow, a nawet ca-
tych konstrukeji inzynierskich [5, 6].

Jedna z technik NDT jest analiza zjawiska propagacji fal
sprezystych [7]. Fale poruszaja si¢ na powierzchni materiatu
lub przenikajg przez jego objetos¢ i sa wrazliwe na zmiang
sztywnosci, peknigcia, ubytki i inne defekty. Ich zaletg jest
mozliwo$¢ wykrywania uszkodzen na duzg odlegtosc od miej-
sca przylozenia wzbudzenia. Fale oddziatuja z geometrig kon-
strukcji i nieciaglo§ciami materialowymi, co umozliwia ich wy-
korzystanie takze w diagnostyce potaczen srubowych.

W celu skutecznego wykorzystania sygnatow pomiarowych
w diagnostyce, konieczne jest ich odpowiednie przetwarzanie.
Pomimo zastosowania filtracji cyfrowej, dane pomiarowe cze-
sto pozostaja ztozone i wielowymiarowe. W zwiagzku z tym
stosuje si¢ metody redukcji wymiarowosci, np. analizg sktad-
nikoéw gtéwnych (PCA) [8, 9], ktdre pozwalajg na przeksztat-
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tal filtering, measurement data often remain complex and mul-
tidimensional. Consequently, dimensionality reduction meth-
ods, such as Principal Component Analysis (PCA) [8, 9], are
employed to transform the set of features into a smaller number
of statistically uncorrelated variables while preserving as much
information as possible from the original dataset.

Machine learning methods, particularly classifiers trained on
input data, have been widely applied in structural diagnostics
for many years. Within supervised machine learning, it is pos-
sible to develop models capable of recognizing patterns asso-
ciated with specific structural states. Particularly effective for
such applications are Support Vector Machines (SVM) and vari-
ous types of artificial neural networks (ANN, SNN) [10+14],
which enable classification even in cases of nonlinear decision
boundaries and a large number of classes.

Description of the model studied

The laboratory model analyzed in this study consists of
a two-story steel portal frame. Its dimensions and connections
details are shown in Figure 1. All columns and beams were fab-
ricated using IPE 80 sections (height = 80 mm, flange width =
46 mm, web thickness = 3.8 mm, flange thickness = 5.2 mm)
made of S235 steel. The axial spacing between the columns
is 160 cm, and the total height of the frame is 172 cm. The
beam-to-column connections were assembled using four rows
of M8 bolts of grade 8.8. The base plates of the columns were
connected to the floor via pinned connections using two M20
bolts of grade 10.9. The measurement system for generating
and recording elastic waves was mounted on the lower beam.
It consisted of two piezoelectric transducers (Noliac CMAP6,
3x3x2 mm) bonded to the web (transmitter C1 and receiver
C2), positioned approximately 16 cm from the left connection.

The analyzed beam-to-column connection states are illus-
trated in Figure lc. The reference state (BU) represents the
condition in which all bolts in the connections are properly
tightened with the same torque (~20 Nm), controlled using
a torque wrench. Variations in bolt tightening were simulated
by loosening selected bolts (indicated as empty circles in the
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cenie zbioru cech do mniejszej liczby zmiennych niepowig-
zanych statystycznie, z zachowaniem jak najwiekszej liczby
informacji zawartych w oryginalnych danych.

Od wielu lat szerokie zastosowanie w diagnostyce kon-
strukcji znajduja metody uczenia maszynowego, szczego6l-
nie klasyfikatory uczace si¢ na podstawie danych wejsciowych.
W ramach nadzorowanego uczenia maszynowego mozliwe jest
tworzenie modeli umozliwiajacych rozpoznawanie wzorcow
zwigzanych z okreslonymi stanami konstrukcji. Szczegolnie
efektywne w tego typu zastosowaniu okazuja si¢ maszyny
wektorow wspierajacych (SVM) oraz rézne typy sztucznych
sieci neuronowych (ANN, SNN) [10+14], ktoére umozliwiaja
klasyfikacje nawet w przypadku nieliniowych granic decyzyj-
nych i duzej liczby klas.

Opis modelu

Analizowany model laboratoryjny dwukondygnacyjne;j sta-
lowej ramy portalowej oraz szczegoly potaczenia pokazano
na rysunku 1. Wszystkie stupy i rygle wykonano z ksztattow-
nikow IPE 80 (h = 80 mm, b =46 mm t, = 3,8 mm, t;= 5,2
mm) ze stali S235. Roztaw stupéw wynosi 160 cm, a laczna
wysoko$¢ ramy 172 cm. Polaczenia rygli ze stupami wyko-
nano ze pomoca czterech rzgdéw $rub M8 klasy 8.8. Blachy
podstawy stupéw potaczono z podlogg przegubowo dwiema
srubami M20 klasy 10.9. Zestaw pomiarowy do wymuszenia
i rejestracji fal sprezystych zostat zamontowany na ryglu dol-
nym. Sktadat si¢ on z dwoch przetwornikow piezoelektrycz-
nych (Noliac CMAP6, 3x3xx2 mm), przyklejonych do $rod-
nika (wzbudnik C1 i odbiornik C2), umieszczonych w odle-
glosci ok. 16 cm od lewego potaczenia.

Analizowane schematy stanu potaczenia belki ze stupem
pokazano na rysunku lc. Stan odniesienia (BU) oznacza, ze
wszystkie §ruby w potaczeniach sg prawidtowo dokrecone ta
sama wielko$ciag momentu obrotowego (~20 Nm), kontrolo-
wanego kluczem dynamometrycznym. Uwzglednione zmiany
w dokrgcaniu symulowano przez poluzowanie wybranych $rub
(puste kotka na schemacie). Byly one mate i niewidoczne go-
tym okiem.
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Fig. 1. Laboratory model of the steel frame: a) position of the piezoelectric transducers and analyzed connections, b) connection dia-

gram, c) simulated fault cases (open circles indicate loose screws)

Rys. 1. Laboratoryjny model ramy stalowej: a) polozenie przetwornikow piezoelektrycznych i analizowanych polgczen, b) schemat polgczenia;
¢) symulowane przypadki usterek (puste kotka oznaczajq poluzowane sruby)
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diagram). These loosened screws remained in place and the
simulated anomaly was not visible to the naked eye.

Three independent measurement series (S1 to S3) were con-
ducted for the left (LD) and right (PD) beam-to-column con-
nections. In each simulated damage scenario, 50 signals were
recorded at intervals of 200 ms using a measurement setup that
included a signal generator, a linear amplifier, and a digital os-
cilloscope. This allowed to collect 2100 measurement patterns
(7%50%3x%2) using the receiver C2: 1050 patterns for the left
connection and 1050 patterns with respect to the right connec-
tion (for normal and damaged condition). The measurements
were performed under laboratory conditions at room tempera-
ture with no significant its fluctuations. An example of an elas-
tic wave signal recorded by sensor C2 in the reference state
(BU), as well as the calculated variance of the signals for the
entire pattern set, are presented in Figure 2. The dashed lines
indicate the segment of the signal used to extract the princi-
pal components for dimensionality reduction. This segment
includes the passage of the wave through the entire beam and
its return to the measurement point C2 (it is assumed that this
segment carries information about the condition of both con-
nections). The determined principal components (from 7 to 16)
were used to train the classification algorithm.

a
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Fig. 2. Comparison of signals for the undamaged BU and faulted
(WG) states at the left node (a) and variance calculated for the en-
tire set of signals — at the left and right nodes (b)
Rys. 2. Porownanie sygnatow w przypadku stanu bez uszkodzenia BU
i z usterkg WG w lewym wezle (a) oraz wariancja obliczona w przy-
padku calego zbioru sygnatow —w wezle lewym i prawym (b)

>
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Detection and classification of connection
state

The concept of a diagnostic system based on the analysis of
elastic wave signals recorded in the laboratory model of a steel
portal frame is presented in Figure 3. This represents a typical
approach employed in engineering structure diagnostics, applica-
ble for detection of faults, anomalies, and damages [13, 15+17].

Przeprowadzono trzy niezalezne serie pomiaréow (S1 do S3)
w przypadku lewego (LD) i prawego (PD) potaczenia rygla.
W kazdym scenariuszu symulowanej usterki zarejestrowano 50
sygnalow w odstepach co 200 ms. Postuzyt do tego uktad po-
miarowy, w sktad ktorego wchodzit generator sygnatu, wzmac-
niacz liniowy oraz oscyloskop cyfrowy. Pozwolito to na ze-
branie przez odbiornik C2 2100 wzorcoéw (70x500x30%2):
1050 zwigzanych z poluzowaniem $rub w potaczeniu lewym
i 1050 w przypadku potaczenia prawego. Pomiary zrealizo-
wano w warunkach laboratoryjnych w temperaturze pokojowe;j
i bez istotnych jej wahan. Przyktadowy sygnaty fal sprezystych
zarejestrowany przez czujnik C2 w przypadku stanu odniesie-
nia (BU) oraz obliczong wariancj¢ sygnatow dla catego zbioru
wzorcOw przedstawiono na rysunku 2. Liniami przerywanymi
oznaczono fragment sygnatu, w przypadku ktérego wyzna-
czono sktadniki gtéwne w celu zredukowania wymiarowosci
zadania. Uwzglednia on przejscie sygnalu przez caly rygiel
1jego powrot do punktu pomiarowego C2 (zatozono, ze niesie
on informacje o stanie obu potaczen). Wyznaczone sktadniki
gtéwne (16) postuzyty do trenowania algorytmu klasyfikacji.

Wykrywanie i klasyfikacja stanu potaczenia
Idea systemu diagnostycznego bazujacego na analizie sygna-
tow fal sprezystych zarejestrowanych w modelu laboratoryjnym
stalowej ramy portalowej zostala przedstawiona na rysunku 3.
Jest to typowe podejscie stosowane w diagnostyce konstrukcji
inzynierskich, ktore mozna zastosowaé m.in. w przypadku wy-
krywania usterek, anomalii i uszkodzen [13, 15+17].
Zatozeniem prowadzonych prac bylo zbadanie mozliwosci
wnioskowania o stanie analizowanych polgczen na podstawie
wynikéw uzyskanych z modeli klasyfikatorow maszynowych

Sygnaty .
R > Przetwmgame
fal sprezystych sygnatow
SVM
wykrywajace
usterki

TAK @ NIE

SVM
Poluzowane N .
<rub > klasyfikujace
SRy usterki
i -
Stan TAK N Potaczenie
polaczenia bezqusterki

Fig. 3. The idea of a fault detection system for bolted connections
of engineering structures

Rys. 3. Ildea systemu wykrywania usterek w polqczeniach Srubowych
konstrukcji inzynierskich
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The main objective of this study was to investigate the fea-
sibility of inferring the condition of the analyzed bolted con-
nections based on the results obtained from machine learning
classifiers available within the Matlab Apps environment (Clas-
sification Learner). This is a “no-code” solution that enables
the analysis of measurement data and the development of in-
ference systems without the need for advanced knowledge of
machine learning algorithms and programming.

Data preparation for training the classifiers required defining
datasets for training and testing. Based on preliminary classi-
fication results, it was decided not to reduce the training data
and extracting a validation set from it (primary purpose of that
solution is to mitigate classifier overfitting to training patterns).
This decision did not significantly worsen the testing perfor-
mance. Therefore, in this case, the validation set was identical
to the training set. The presented results pertain solely to test-
ing the trained classifier using a dataset that was not involved
in its training. It was also assumed, that a two-stage classifica-
tion procedure is adopted. In the first stage, the patterns were
divided into three classes: no damage, damage in the left con-
nection, and damage in the right connection. The assigned la-
bels were {0, 1, 2}, respectively. For the training process, data
from measurement series S1 and S2 were used, while series
S3 was employed for testing. This resulted in a data split of
2/3 for training (a total of 1,400 patterns) and 1/3 for testing
(700 patterns). This stage enables determining whether a con-
nection is damaged (bolt loosening appeared) and identifying
which connection is affected (left or right). In the second stage,
to verify the classification algorithm, the patterns were divided
into two independent subsets — one for the left connection and
one for the right connection. Two separate classifiers were
trained, whose task was to provide a more detailed classifica-
tion of the connection state by assigning one of the predefined
classes (1+6). To account for potential false alarms, patterns
representing the undamaged state (0) were also included in
the training process. An example of the testing results for the
quadratic SVM classifier (results for the narrow neural network
16-10-1 were identical) is presented in Figure 4. The appli-
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dostepnych w $rodowisku Matlab Apps (Classifiaction Lear-
ner). Jest to rozwigzanie typu ,,no-code”, pozwalajace anali-
zowac¢ dane pomiarowe i budowac systemy wnioskowania bez
potrzeby zaawansowanej znajomosci algorytmow uczenia ma-
SZynowego i programowania.

Przygotowanie danych do trenowania klasyfikatoréw wy-
magato zdefiniowania zbioréw danych do ich uczenia i testo-
wania. Po analizie wstepnych wynikéw klasyfikacji zrezygno-
wano z pomniejszania danych uczgcych i wyodrebniania z nich
zbioru walidujacego, ktorego gtownym celem bylo przeciw-
dziatanie zjawisku nadmiernego dopasowania si¢ klasyfikatora
do wzorcow uczacych — nie spowodowato to istotnego pogor-
szenia si¢ wynikow testowania. W zwiazku z tym zbiér wa-
lidujacy byt w tym przypadku tozsamy ze zbiorem uczacym.
Natomiast przedstawione wyniki dotycza jedynie testowania
nauczonego klasyfikatora za pomocg zbioru danych, ktory nie
brat udzialu w procesie jego weryfikacji. Przyjeto, ze klasy-
fikacja zostanie przeprowadzona dwuetapowo. W pierwszym
etapie rozdzielono wzorce na 3 klasy: stan bez usterki, usterka
w lewym potgczeniu, usterka w prawym potaczeniu, ktérym
przypisano etykiety {0, 1, 2}. Nastepnie do uczenia wybrano
dane zwiazane z seriami pomiarowymi S1 i S2, a do testowa-
nia seri¢ S3. Wynikaja z tego nastepujace proporcje podziatu
na wzorce do uczenia (2/3, tacznie 1400) i testowania (1/3,
tacznie 700). W tym etapie mozna zatem uzyska¢ informacje,
czy w polaczeniach wystepuje usterka zwigzana z obluzowa-
niem $rub, a jesli tak, to w ktorym polaczeniu (z lewej czy pra-
wej strony rygla). W etapie drugim, do weryfikacji algorytmu
klasyfikacji, wzorce rozdzielono na 2 niezalezne podzbiory —
osobno w przypadku zmian w lewym i prawym polaczeniu.
Na tej podstawie wytrenowano dwa klasyfikatory, ktorych
zadaniem ma by¢ dokladniejsza klasyfikacja stanu potaczen
z przypisaniem jednej z zatozonych wczesniej klas (1-6). Na
wypadek pojawienia si¢ tzw. fatszywych alarméw, do trenowa-
nia dodano takze wzorce stanu bez uszkodzenia (0). Przyktad
wynikow testowania, ktore dotycza nieliniowego klasyfikatora
SVM (wynik w przypadku waskiej sieci neuronowej 16—10-1
byt identyczny) przedstawiono na rysunku 4. Zastosowanie
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Fig. 4. Example results of pattern classification: a) stage A — no fault condition (0), fault in the left connection (1), fault in the right con-
nection (2), b) stage B — assigning patterns to one of the 7 classes (0-BU, 1-G1, 2-GD, 3-D1, 4-WD, 5-WO, 6-WG)

Rys. 4. Przykiadowe wyniki klasyfikacji wzorcow: a) etap A — stan bez usterki (0), usterka w polgczeniu lewym (1), usterka w polgczeniu prawym
(2); b) etap B — przypisanie wzorcom jednej z 7 klas (0-BU, 1-G1, 2-GD, 3-D1, 4-WD, 5-WO, 6-WG)
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cation of the linear SVM classifier achieved an accuracy of
99.7%. Table 1 summarizes the classification results also with
respect to the input vectors with lower numbers of elements.
The feature order was established based on the results of the
MRMR (Minimum Redundancy Maximum Relevance) algo-
rithm available in Matlab Apps. The significance of the fea-
tures varies compared to the normalization derived from PCA
analysis (Table 2). This likely results from the adopted signal
compression method, since each subsequent principal compo-
nent statistically contains relevant information about the recur-
ring features of a given signal, whereas their relationship with
the number of defined classes differs from the order yielded
by the feature ranking. The observed variability in classifica-
tion performance using the linear SVM classifier suggests that
some of the features may not provide useful information for the
problem of detecting faults in bolted connections.

liniowego klasyfikatora SVM pozwolito uzyska¢ doktadnosé
na poziomie 99,7%.

W tabeli 1 zestawiono wyniki klasyfikacji w odniesieniu do
wektorow wejsciowych mniejszej dtugosci. Kolejnos¢ danych
ustalona zostata na podstawie wynikéw algorytmu MRMR (Mi-
nimum Redundancy Maximum Relevance), dostepnego w Mat-
lab App. Istotno$¢ danych jest rézna, w poréwnaniu z unormo-
waniem wynikajacym z analizy PCA (tabela 2). Wynika to praw-
dopodobnie z charakteru przyjetej metody kompresji sygnatu,
poniewaz kazdy kolejny sktadnik gtdéwny zawiera statystycznie
istotne informacje o powtarzalnych cechach danego sygnatu, na-
tomiast ich zwiazek z liczba zdefiniowanych klas jest inny, niz
wynika to z uzyskanej kolejnosci. Natomiast zmienno$¢ wyni-
kow w przypadku klasyfikacji liniowej SVM moze wskazywac,
ze niektore z nich nie dostarczajg informacji, przydatnych w ana-
lizowanym problemie wykrywania usterek w potaczeniach.

Table 1. Classification testing results (accuracy [%]) at stage A for different numbers of parameters in the input vector — order of prin-
cipal components determined based on the MRMR algorithm.

Tabela 1. Wyniki testowania klasyfikacji (doktadnosc [%5]) na etapie A w przypadku roznej liczby parametrow w wektorze wejsciowym — kolejnosé
sktadnikow glownych ustalona zostata na podstawie algorytmu MRMR

Liczba elementow wektora wejsciowego 7 8 9 10 11 12 13 14 15 16
Model liniowy SVM 78,7%  92,9%  98,4%  93,7%  93,7%  859%  86,0%  91,6%  99,1%  99,7%
Model nieliniowy SVM 84,1%  88,1%  100%  100%  100%  100%  100%  99.9%  100%  100%

Table 2. The significance of the input data features (principal components) sorted by the PCA and MRMR algorithm

Tabela 2. Istotnos¢ cech danych wejsciowych (sktadnikow gtownych) posortowana wg algorytmu PCA i MRMR

Algorytm

PCA 1 2 3 4 5 6
MRMR etap A 3 6 15 11 1 8
MRMR etap B 4 11 13 1 8 3

Figure 4b presents the classification results from stage B
(testing only), in which, to each fault scenario the appropriate
class was assigned. For the left connection, perfect fault clas-
sification was achieved even with only seven principal com-
ponents, selected based on importance factor taken from the
MRMR analysis. Whereas for the right connection, more than
twelve components were required. From the presented plots, it
is also possible to infer information about the number of pat-
terns assigned to each class in the testing set (in the training
phase, the number of patterns was twice as large).

Summary and Conclusions

The presented study is an example of the potential applica-
tions of machine learning in civil engineering, such as support-
ing decision-making processes in maintenance and inspection
planning. In addition to the presented task of pattern classifica-
tion, tasks related to parameter prediction (e.g., material prop-
erties, the location and size of damage), known as regression,
also play a significant role in structural condition assessment
systems. Matlab Apps offer a wide range of tools (e.g., neural
networks, support vector machines, regression trees, Gaussian

7

9

Numery skladnikéw glownych posortowane wg ich istotnosci

8 9 10 11 12 13 14 15 16

5 16 4 2 12 10 7 13 14

15 6 9 12 2 5 16 7 14 10

Na rysunku 4b przedstawiono wynik klasyfikacji w eta-
pie B, ktory polegat na przypisaniu usterce wlasciwej klasy.
W przypadku lewego polaczenia bezbtedng klasyfikacje usterek
uzyskano juz przy siedmiu sktadnikach glownych wybranych
zgodnie z istotno$cia wynikajaca z analizy MRMR, natomiast
w przypadku prawego wezta powyzej dwunastu sktadnikow.
Z przedstawionych wykreséw mozna takze odczyta¢ informa-
cje o liczebnosci wzorcow przypisanych do poszczegodlnych
klas w zbiorze testujacym (w przypadku uczenia liczebno$¢
wzorcow byta dwukrotnie wigksza).

Podsumowanie i wnioski

Przedstawione zagadnienie jest jednym z przyktadow mozli-
wego zastosowania uczenia maszynowego w inzynierii ladowe;j,
np. w celu wspomagania procesu podejmowania decyzji w plano-
waniu napraw i przegladow. Poza przedstawionym zadaniem kla-
syfikacji wzorcow, rownie istotng role w systemach oceny stanu
konstrukcji stanowig zadania zwigzane z predykcja parametréw
(np. materiatowych, potozenia i wielko$ci uszkodzen), czyli tzw.
regresja. Matlab Apps oferuja duza game rozwiazan (m.in. sieci
neuronowe, maszyny wektorow wspierajacych, drzewa regresji,
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processes) that assist engineers and researchers in exploring
their capabilities across various application areas.

The analysis of the principal component features using the
MRMR algorithm provided new insights into the significance
of the information contained therein, especially from the per-
spective of classification and regression tasks. During the data
analysis, other such solutions available in Matlab Apps were
also analyzed (ReliefF, ANOVA, Kruskal-Wallis). Although the
results obtained in this way led to a different ranking order of
the principal components in terms of their importance, it was
ultimately decided to limit the presented results to MRMR only.
Additionally, it was observed that including a larger number
of principal components (e.g. 50) caused the later components
to shift to higher positions in the ranking. This issue requires
further analysis and will constitute the next stage of research
concerning signal compression problems and the usefulness of
the obtained features in tasks involving elastic wave propaga-
tion and machine learning.

The model used for the experimental studies has certain lim-
itations. These include the small dimensions of the structure
(160x172 cm), the cross-section (IPE80), and the bolts (M8).
As aresult, changes introduced in the right connection (PD) af-
fected the signals measured near the left joint (LD). Therefore,
it is planned to extend the presented approach to include the
capability of training and testing the diagnostic algorithm us-
ing data related to independently behaving connections. How-
ever, this requires additional measurements, in which the beam
changes its position (e.g., is rotated or moved to a higher level)
along with the measurement setup (two piezoelectric transduc-
ers). This will allow verification of whether it is possible to
obtain generalization capabilities of such a diagnostic system,
assuming that training is carried out on data from one or two
connections and testing on data recorded from another con-
nection. This approach differs from the one presented in this
article but is closer to the actual operating conditions of struc-
tural health monitoring systems. It will provide new insights
into the scalability of the proposed approach and its potential
applications.

It is also worth mentioning that the measured elastic wave
signals in all analyzed fault scenarios do not account for the
possibility of variable loads occurring in the structure. This is
one of the issues requiring further research to verify the pro-
posed approach under conditions closer to real-world struc-
tural operation.
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procesy Gausowskie), wspomagajacych inzynieréw i naukowcow
w testowaniu ich mozliwosci w réznych obszarach zastosowan.

Przeprowadzona analiza cech sktadnikow gtéwnych z wyko-
rzystaniem algorytmu MRMR wniosta nowa wiedze na temat
istotno$ci zawartych w nich informacji, zwtaszcza z punktu wi-
dzenia zadan klasyfikacji i regresji. W trakcie przeprowadzo-
nej analizy danych testowano takze inne tego typu rozwiazania
dostepne w Matlab App (ReliefF, ANOVA, Kruskal-Wallis).
Mimo ze uzyskane w ten sposob wyniki prowadzity do innej
kolejnosci sktadnikow gtéwnych w rankingu ich istotnosci,
ostatecznie zdecydowano si¢ na ograniczenie przedstawionych
wynikow jedynie do MRMR. Ponadto zauwazono, ze wiacze-
nie do analizy wigkszej liczby sktadnikéw gltownych (np. 50)
powoduje przesuniecie dalszych sktadnikow gtownych na wyz-
sze pozycje rankingu. Zagadnienie to wymaga szerszej analizy
i bedzie stanowi¢ kolejny etap badan w zakresie zagadnien
zwiazanych z kompresja sygnatow czasowych i przydatnos-
cig uzyskanych cech w zadaniach wykorzystujacych zjawisko
propagacji fal sprezystych oraz uczenie maszynowe.

Model, ktory postuzyt do przeprowadzenia badan do§wiad-
czalnych, ma pewne ograniczenia. Zaliczy¢ do nich mozna nie-
wielkie wymiary konstrukeji (160x 172 cm), przekroju poprzecz-
nego (IPE80) oraz $rub (M8). W rezultacie zmiany wprowadzane
w prawym potaczeniu (PD) miaty wptyw na sygnaty mierzone
w poblizu wezta lewego (LD). W zwigzku z tym planowane jest
rozszerzenie przedstawionego podejécia 0 mozliwos¢ uczenia
i testowania algorytmu diagnostycznego na danych, ktore doty-
cza niezaleznych od siebie potaczen. Wymaga to jednak prze-
prowadzenia dodatkowych pomiaréw, w ktorych rygiel zmienia
swoje potozenie (np. jest obracany lub przenoszony na wyzszy
poziom) wraz z zestawem pomiarowym (2 przetworniki piezo-
elektryczne). Pozwoli to sprawdzi¢, czy mozliwe jest uzyskanie
zdolnosci generalizacyjnych takiego uktadu diagnostycznego,
zakladajac, ze uczenie jest przeprowadzane na danych pocho-
dzacych z jednego lub dwoch potaczen, a testowanie na danych
zarejestrowanych dla innego potaczenia. Jest to podejscie od-
mienne od przedstawionego w artykule, ale blizsze rzeczywistym
warunkom pracy systemow monitorowania stanu konstrukcji. Po-
zwoli to uzyska¢ nowa wiedzg na temat mozliwosci skalowania
zaproponowanego podejscia i potencjalnego jego zastosowania.

Warto wspomnie¢, ze zmierzone sygnaty fal sprezystych we
wszystkich analizowanych scenariuszach usterek nie uwzgled-
niajg mozliwosci wystgpowania w konstrukcji obcigzen zmien-
nych. Jest to jedno z zagadnien wymagajacych dalszych badan
w celu sprawdzenia zaproponowanego podejscia w warunkach
zblizonych do rzeczywistej pracy konstrukcji.
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