dr inż. Bartłomiej Brzeziński^{1)*)} ORCID: 0000-0002-0268-0551 dr hab. inż. Andrzej Olchawa¹⁾ ORCID: 0000-0002-6211-4375 inż. Marianna Wierzbicka¹⁾ ORCID: 0000-0002-9788-277X

Wybrane właściwości gruntowych materiałów kompozytowych jako materiału konstrukcyjnego do budowy niskich nasypów obwałowań przeciwpowodziowych Selected properties of the soil composite materials as a structural material for the low flood embankments construction

DOI: 10.15199/33.2023.06.08

Streszczenie. W artykule przedstawiono wyniki badań laboratoryjnych właściwości fizycznych i mechanicznych (zagęszczalności, ściśliwości, przewodności hydraulicznej oraz wytrzymałości na ścinanie) gruntowych materiałów kompozytowych stanowiących mieszaninę torfu, popiołu lotnego i wapna hydratyzowanego. W świetle uzyskanych wyników, parametry geotechniczne wszystkich kompozytów są porównywalne, co stanowi, że o przydatności materiału może decydować kryterium roboczego przedziału wilgotności.

Słowa kluczowe: obwałowania przeciwpowodziowe; torf; popiół lotny; wapno hydratyzowane.

o rewitalizacji i modernizacji niskich nasypów przeciwpowodziowych na obszarze Żuław Elblaskich, zaliczanych do III i IV klasy budowli hydrotechnicznych, stosuje się miejscowe grunty organiczne. Zmniejsza to znacznie koszty w porównaniu ze stosowaniem gruntów mineralnych, które musiałyby być transportowane spoza obszaru Żuław. Ponadto nasypy obwałowań z gruntów organicznych wywołują w podłożu mniejsze naprężenia w porównaniu z nasypami o takiej samej konstrukcji, lecz wykonanymi z gruntów mineralnych. Ogranicza to istotnie osiadanie słabonośnego i silnie odkształcalnego podłoża. Zasadniczą wadą stosowania gruntów organicznych jest szybka degradacja techniczna nasypów, która oznacza istotnie krótszy czas technicznej zdolności piętrzenia wody w porównaniu z obwałowaniem o takiej samej konstrukcji z gruntów mineralnych.

Degradację gruntu organicznego, polegającą na zwiększeniu jego porowatości w wyniku procesów mineralizacji i humifikacji oraz zmiany struktury w cyklu nawilżanie - osuszanie, uznaje się za podstawowy czynnik procesu degradacji obwałowań korpusów nasypów [1 – 5]. Problem degradacji gruntów organicznych w nasypach obwałowań przeciwpowodziowych szczegółowo omówiono w [6]. Czas eksploatacji nasypów można wydłużyć dzięki zastosowaniu do ich budowy, modernizacji bądź rewitalizacji gruntowych materiałów kompozytowych z miejscowych gruntów organicznych oraz materiałów mineralnych w postaci np. popiołu lotnego i wapna hydratyzowanego. Taki gruntowy materiał kompozytowy musi charakteryzować się dobrą zagęszczalnością, małą gęstością objętościową, małą przewodnością hydrauliczną oraz wytrzymałością na ścinanie.

W artykule przedstawiono wyniki badań laboratoryjnych wybranych właściwości sześciu gruntowych materiałów

to assessment of composite as an embankment construction material. Keywords: flood embankments; peat; fly ash; hydrated lime.

Abstract. The paper presents the results of laboratory tests of

physical and mechanical properties (compaction, compressibili-

ty, hydraulic conductivity, and shear strength) of ground compo-

site materials made of peat, fly ash and hydrated lime. The re-

sults showed that the geotechnical parameters of the all compo-

sites are comparable. Given to these properties it may be accep-

ted that range of working moisture is most usefulness parameter

kompozytowych, które przeznaczone są do budowy i modernizacji nasypów pełniacych funkcję zapór.

Materiały i badania

Gruntowe materialy kompozytowe wykonano z gruntu organicznego, tj. torfu i dwóch materiałów mineralnych: popiołu lotnego i wapna hydratyzowanego o nazwie handlowej "Bielik" [7].

Grunt organiczny pobrano świdrem, z przelotu warstwy od 1,0 do 2,0 m p.p.t., w miejscowości Komorowo Żuławskie, która znajduje się na przydepresyjnym obszarze Żuław Elblaskich, a następnie wykonano badania laboratoryjne. Właściwości gruntu organicznego zestawiono w tabeli 1. Ze względu na zawartość materii organicznej grunt sklasyfikowano jako torf zgodnie z normą PN-86/B-02480 [8].

Popiół lotny (PL) pochodził z Elektrowni Elbląg. Powstał w kotłach pyłowych w wyniku spalania miału węgla kamiennego typu 32 M II. Wyniki badań składu chemicznego popiołu spektrometrem plazmowym ThermoiCAP 6500

32

¹⁾ Akademia Nauk Stosowanych w Elblągu, *) Adres do korespondencji: b.brzezinski@ans-elblag.pl

Tabela 1. Właściwości gruntu organicznegoTable 1. The properties of organic soil

Gęstość objętoś- ciowa ρ [Mg/m³]	Wil- got- ność [%]	Zawartość materii* orga- nicznej [%]	Poro- wa- tość n	pН	Stopień rozkła- du**
0,9	350,0	62,9	0,88	6,5	H4 – H5

*na podstawie badań termograwimetrycznych ** wg skali van Posta

Duo ICP przedstawiono w tabeli 2. Na podstawie składu chemicznego oraz strat prażenia, badany popiół można ocenić jako krzemianowy kategorii A. Przy wykorzystaniu metody Le Chateliera oraz metody Blaine'a [9] obliczono gęstość właściwą, która wynosi 2298,32 kg/m³ oraz powierzchnię właściwą – 364,78 m²/kg. Przeprowadzone badania wymywalności metali ciężkich i metaloidów z popiołu lotnego pokazały, że jest on neutralny dla środowiska gruntowego [10].

Tabela 2. Skład chemiczny popiołu lotnegoTable 2. Chemical composition of fly ash

	Skład chemiczny[%]												
SiO ₂	Fe ₂ O ₃	Al ₂ O ₃	Mn ₃ O ₄	TiO ₂	CaO	MgO	SO ₃	P ₂ O ₅	Na ₂ O	K ₂ O	BaO	Sr0	Straty prażenia [%]
56,50	6,90	18,60	0,12	0,86	4,74	2,81	0,48	0,41	0,72	3,08	0,16	0,07	3,71

Wapno hydratyzowane. Do wykonania materiałów kompozytowych użyto wapna hydratyzowanego (WH) sucho gaszonego.

Skład gruntowych materiałów kompozytowych. Materiały kompozytowe wykonano przez dokładne wymieszanie torfu o wilgotności naturalnej z popiołem lotnym oraz wapnem hydratyzowanym. Masa torfu została tak dobrana, aby zawartość jego szkieletu gruntowego odpowiadała założonemu składowi materiału kompozytowego. Zawartość składników w przygotowanych sześciu mieszankach zestawiono w tabeli 3.

Zagęszczalność. W celu oznaczenia wilgotności optymalnej i maksymalnej gęstości objętościowej szkieletu gruntowego wykonano "próbę Proctora". Na tej podstawie obliczono przedział wilgotności roboczej, czyli wilgotności, jaką musi mieć kompozyt, aby możliwe było jego zagęszczenie do Is \geq 0,92. Wartość ta jest minimalną wymaganą w przypadku nasypów zaliczanych do III i IV klasy budowli hydrotechnicznych [1, 6, 11]. Schemat wyznaczenia przedziału wilgotności roboczej przedstawiono na rysunku 1. Badania wykonano zgodnie z PN-88/04481 i PN-EN 1997-2 pkt 8 [12, 13].

Wszystkie próbki materiałów kompozytowych przed badaniem przewodności hydraulicznej, odkształcalności edometrycznej oraz wytrzymałości na ścinanie zagęszczono w aparacie Proctora. Wilgotność zagęszczanych gruntów by-

Tabela 3. Zawartość masy szkieletu torfu, popiołu lotnego i wapna hydratyzowanego *Table 3. The mass content of peat skeleton, fly ash and hydrated lime*

Materia-	Kompozyt								
pozytowe	C 1	C2	C3	C4	C5	C6			
Torf (T) [kg]	0,488	0,476	0,454	0,654	0,644	0,624			
Popiół lotny (PL) [kg]	0,488	0,476	0,454	0,327	0,322	0,312			
Wapno hydraty- zowane (WH) [kg]	0,024	0,048	0,092	0,016	0,032	0,064			

ła bliska wilgotności optymalnej i zawsze znajdowała się w przedziale wilgotności roboczej, a wskaźniki zagęszczenia próbek kompozytów były większe od 0.92.

Przewodność hydrauliczna. Po zakończeniu zagęszczania wycinano próbkę materiału kompozytowego z dolnego cylindra aparatu Proctora pierścieniem o średnicy 8 cm i wysokości 7,96 cm. W badaniu współczynnika filtracji bar-

Rys. 1. Roboczy przedział wilgotności gruntów o Is \geq 0,92

Fig. 1. Working range of water content i.e. for 92% relative compaction

dzo ważną czynnością jest nasycenie próbki wodą, tak aby stopień wilgotności był S_r \approx 1,0. Przed badaniem wszystkie próbki nasycano wodą zgodnie ze schematem przedstawionym na rysunku 2. Na cylinder z kompozytem nakładano pusty cylinder o takiej samej średnicy, a krawędź styku uszczelniono gumowym O-ringiem. Taki zestaw przekładano do naczynia szklanego i ustawiano na ruszcie drewnianym o wysokości 2 mm. Napór wody był równy 90 mm. Czas saturacji próbki wynosił ok. jednego tygodnia.

Oznaczenia: 1 – pusty cylinder; 2 – uszczelnienie gumowe; 3 – woda destylowana; 4 – metalowy cylinder wypełniony kompozytem; 5 – naczynie szklane **Rys. 2. Schemat sposobu nasycania materiałów kompozytowych**

Fig. 2. The method of saturation of composite materials

W związku z brakiem możliwości określenia gestości objętościowej torfu i obliczenia stopnia wilgotności jako kryterium nasycenia przyjęto pojawienie się warstwy wody na powierzchni. Świadczyć to może o tym, że powietrze obecne w porach zostało wyparte i zastąpione wodą. Po zakończeniu procesu nasycania próbkę umieszczano w komorze aparatu do pomiaru współczynników filtracji gruntów, którego schemat przedstawiono na rysunku 3. Komorę aparatu napełniano wodą i zadawano ciśnienie p_2 , które było większe od p_1 , tj. ciśnienia na dopływie próbki. Występująca różnica ciśnienia $p_2 - p_1$ ogranicza przepływ wody wzdłuż ścianek próbki. Konstrukcja aparatu umożliwia również regulację ciśnienia na odpływie p₃. Zadaną wartość ciśnienia utrzymywano

p. 5 6

Oznaczenia: 1 - próbka gruntu w osłonie gumowej; 2 – osłona gumowa; 3 – odpowietrzenie; 4 5 – filtrat; 6 – spust; 7 – do manometru - zasilanie:

Rys. 3. Aparat do pomiaru współczynnika filtracji gruntów [6]

Fig. 3. The apparatus for soil coefficient of permeability measuring

za pomocą automatycznych regulatorów. Generowane ciśnienie wywoływato spadek hydrauliczny i = 2, 4, 6, 8, 10, 12. Wartości współczynników filtracji obliczono na podstawie liniowego prawa Darcy'ego:

$$\mathbf{k} = \mathbf{q}/(\mathbf{i} \cdot \mathbf{A})$$

q-wydatek przepływu [m³/s];

A-pole powierzchni próbki gruntu prostopadłe do kierunku przepływu wody [m2];

Obliczone wartości przeliczono dla warunków filtracji w temperaturze 283 K (+10°C).

Edometryczny moduł ściśliwości. Ściśliwość gruntu to jego zdolność do zmniejszania objętości pod wpływem przyłożonego obciążenia. Za miarę ściśliwości przyjęto edometryczny moduł ściśliwości pierwotnej M₀ i wtórnej M, który ma wymiar naprężenia, a wyznaczany jest na podstawie badania gruntu w edometrze. Edometryczne moduły ściśliwości obliczono na podstawie badania kompozytów w edometrze EL-1, zgodnie z punktem szóstym normy PN-88/B-04481 [12]. Średnica próbek ściskanych wynosiła 65 mm, a wysokość 20 mm. Próbkę obciążano kolejno ciśnieniem ściskającym 12,5, 25, 50,100 i 150 kPa. Edometryczny moduł ściśliwości pierwotnej obliczono z wzoru (2):

$$\mathbf{M}_{0} = (\Delta \sigma' \cdot \mathbf{h}_{i-1}) / \Delta \mathbf{h}_{i}$$

(2)

gdzie

σ

$$\Delta \sigma' - przyrost obciążenia ściskającego [kPa];
 $\sigma'_{i} = \sigma - w przypadku u = 0, czas konsolidacji
filtracyjnej trokreślono na podstawie logarytmu$$$

czasu (log time); - wysokość próbki w edometrze przed h. . zwiększeniem naprężenia z σ'_{i-1} do σ'_i [mm]; $\Delta h_i - zmiana wysokości próbki w przypadku$ przyrostu naprężeń [mm].

Osiadania korpusu można obliczyć na podstawie wzoru zaczerpniętego z [6]:

$$s = (\gamma \cdot H^2)/M_o \qquad (3)$$

gdzie:

ciężar objętościowy materiału konstrukcyjnego [kN/m3]:

H – wysokość korpusu nasypu [m];

M₀ – edometryczny moduł ściśliwości materiału konstrukcyjnego [kPa].

Wytrzymałością gruntu na ścinanie

 τ_{c} nazywamy maksymalny opór, jaki stawia on naprężeniom ścinającym, po pokonaniu którego następuje zniszczenie struktury gruntu. Wytrzymałość na ścinanie jest funkcją naprężenia normalnego σ_n oraz parametrów wytrzymałościowych gruntu. Wytrzymałość ta opisana jest hipoteza Coulomba:

$$\tau = \sigma \bullet tg\phi + c \tag{4}$$

gdzie:

(1)

 τ – graniczne naprężenie styczne [kPa];

 φ – kąt tarcia wewnętrznego [°];

c - kohezja gruntu [kPa].

Parametry wytrzymałościowe gruntu zależą od warunków prowadzenia badania. W przypadku, gdy eksperyment wykonywany jest na próbkach niekonsolidowanych, parametry wytrzymałości na ścinanie interpretuje się jako całkowite (ϕ_{u}, c_{u}) . Wyniki badania w aparacie bezpośredniego ścinania, ze względu na sposób drenowania oraz prędkość ścinania, są bliskie uzyskanym w testach trójosiowego ściskania metoda O (UU), tj. bez wstępnej konsolidacji i bez odpływu w czasie procesu ścinania. Wówczas wytrzymałość gruntu określona jest w funkcji naprężeń całkowitych, a parametry wytrzymałościowe ϕ_u i c_u stosuje się do obliczeń stateczności nasypów na podstawie wieloboku sił przy stosowaniu naprężeń całkowitych [14].

Parametry ϕ_{i} i c obliczono na podstawie badań wytrzymałościowych w aparacie bezpośredniego ścinania. Zgodnie z PN-88/B-04481 [12] do obliczeń wytrzymałości na ścinanie τ_{f} przyjmuje się maksymalną siłę ścinając
ą \mathbf{Q}_{\max} w przypadku względnego odkształcenia próbki $\varepsilon < 10\%$ lub siłę ścinającą Q₁₀ odpowiadającą $\varepsilon = 10\%$. Wykonano cztery ścięcia każdego kompozytu zagęszczonego do tej samej wartości Is \geq 0,95, przy naprężeniu normalnym 25, 50, 100 i 150 kPa. W przypadku naprężenia $\sigma_n = 25$ kPa, ze względu na konstrukcję aparatu, konieczne było wykonanie badania na próbce (skrzynce) o wymiarach 8,48 x 8,48 cm, stąd A = 72 cm². Prędkość przesuwu próbki (skrzynki) wynosiła 1 mm/1 min. Naprężnie ścinające obliczono wg wzoru:

$$\tau = Q_{10} / A_{cor}$$
(5)

gdzie: Q10 - siła ścinająca odpowiadająca 10% odkształceniu próbki [kN];

skorygowana wartość powierzchni równa $0, 9^{\circ}$ 36 cm² lub w przypadku $\sigma_n = 25$ kPa, $0, 9 \cdot 72$ cm².

Do obliczeń wartości qui cu wykorzystano program numeryczny obliczający, metodą najmniejszych kwadratów, równania kierunkowe aproksymowanych prostych $\tau_{f} = \tau_{f}(\sigma_{n})$.

Wyniki badań

Zageszczalność. Wilgotność optymalną, maksymalną gęstość objętościową szkieletu gruntowego oraz porowatość materiałów kompozytowych przedstawiono w tabeli 4, a na rysunku 4 przedział polowej wilgotności roboczej każdego kompozytu. Warunkiem wymaganego zagęszczenia jest stosowanie, w warunkach polowych, energii zageszczania materiału kompozytowego co najmniej 0,59 MJ/m³. W tabeli 5 przedstawiono skład sześciu gruntowych materiałów kompozytowych, w przypadku których możliwe jest uzyskanie, w warunkach polowych, wskaźnika zagęszczenia Is = 1,0.

Wyniki obliczeń wskazują, że najkrótszy wymagany czas "sezonowania" torfu będzie wówczas, gdy do budowy,

Tabela 4 .Wyniki zagęszczalności w próbie **Proctora**

Table 4. Proctor Compaction Test Results

Damanata	Kompozyt								
Parametr	C1	C2	C3	C4	C5	C6			
Maksymalna gęstość obję- tościowa szkie- letu grunto- wego [Mg/m ³]	0,751	0,787	0,798	0,595	0,632	0,645			
Wilgotność optymalna [%]	78,2	72,3	77,9	112,1	103,1	98,3			
Porowatość	0,61	0,59	0,63	0,69	0,68	0,67			

34

ATERIALY UDOWLANE

GEOTECHNIKA

Wilgotność [%]

Rys. 4. Przedział wilgotności polowej (roboczej) oraz wilgotność optymalna kompozytów

Fig. 4. Working range of water content and optimum water content of the composite

od zawartości wapna, charakteryzują się większymi wartościami współczynników filtracji. Przedstawione wyniki badań wskazują również wpływ wartości spadku hydraulicznego na wydatek przepływu. Wartości k₁₀ obliczone na podstawie natężenia przepływu dla spadku hydraulicznego i = 12 oraz i = 2 różnią się o jeden rząd wielkości. W tabeli 6 zestawiono wyniki badań współczynników filtracji. Brak wyraźnej korelacji między składem kompozytów a wartościami k₁₀ może wynikać z braku uzyskania homogeniczności materiałów pomimo starannego mieszania w warunkach laboratoryjnych.

Tabela 5. Skład materiałów kompozytowych oraz wilgotność torfu w przypadku zagęszczenia Is = 1,0

Table 5. Composition of composite materials and peat moisture to obtain relative compaction Is = 1,0

Kompozyt	Wilgotność optymalna [%]	Masa torfu [t]	Wilgotność torfu* [%]	Masa popiołu lotnego [t]	Masa wapna hydratyzowanego [t]
C1	78,2	2,60	160,0	1,0	0,05
C2	72,3	2,52	152,0	1,0	0,10
C3	77,9	2,72	172,0	1,0	0,20
C4	112,1	2,97	157,0	0,5	0,25
C5	103,1	2,60	160,0	0,5	0,05
C6	98,3	2,57	157,0	0,5	0,10

C2 i C3, w których stosunek masy torfu do masy popiołu wynosi 1. Większa wartość M_o materiału C3 w porównaniu z C2 może być związana z dwukrotnie większą zawartością wapna hydratyzowanego. W pozostałych materiałach, w których stosunek masy torfu do masy popiołu jest równy 2, niezależnie od zawartości wapna hydratyzowanego, jest znacznie mniejsza od C2 i C3. Wpływ obecności wapna hydratyzowanego na wartość M_o pokazuje porównanie materiałów C1, C2 i C3, w których stosunek masy torfu do masy popiołu wynosi 1. Wartości M₀ zwiększają się wraz ze zwiększaniem zawartości wapna hydratyzowanego. Wartości edometrycznych modułów ściśliwości zestawiono w tabeli 7.

Wytrzymałość na ścinanie. W obliczeniach stateczności nasypów niskich istotna będzie wytrzymałość τ_f w przypadku naprężenia normalnego 0 ÷ 40 kPa. Analizy stateczności nasypów na obszarze Żuław [17] wykazały, że największe naprężenia normalne do powierzchni poślizgu nie przekraczają 40 kPa [16]. Wszystkie materiały kompozytowe mają większą wytrzymałość

* wilgotność torfu po "sezonowaniu"

rewitalizacji lub modernizacji nasypów obwałowań zostanie zastosowany materiał kompozytowy o symbolu C2 lub C6. Największą wartością $\Delta w = 47\%$ charakteryzuje się kompozyt C6. Wartości przedziałów wilgotności roboczych materiałów kompozytowych o symbolach C1, C2, C4 i C5 są porównywalne.

Przewodność hydrauliczna. Zgodnie z uznanymi kryteriami [15], materiały oznaczone symbolami C2, C3 i C4 są półprzepuszczalne podobnie jak torf (materiał bazowy), a materiały C1, C5 i C6 nieprzepuszczalne. Wartości współczynników filtracji materiałów C1, C5 są porównywalne, mniejsze od wartości k₁₀ pozostałych kompozytów oraz bazowego materiału, jakim jest torf. W obydwu materiałach stosunek masy torfu do masy popiołu lotnego wynosi odpowiednio 1 lub 2. Większa masa wapna w jednostkowej masie kompozytu zmniejsza wartość współczynnika filtracji. Pozostałe materiały, w których stosunek masy torfu do masy popiołu jest równy 2, niezależnie

35

 Tabela 6. Wartości współczynników filtracji [m/s]

 Table 6. The composites coefficients of permeability [m/s]

<i>uore</i> 0. <i>rne</i>										
Spadek	Współczynnik filtracji kompozytu [m/s]									
ydrauliczny	C1	C2 C3		C4	C5	C6	Torf			
i = 12	1,67•10-9	4,43•10-7	1,26•10-6	1,280•10-7	2,59•10-9	5,55•10-9	1,31•10-7			
i = 10	2,03•10-9	4,55•10-7	2,94•10-7	3,95•10-8	5,00•10-10	8,91•10-10	9,91•10-8			
i = 8	4,54•10-10	4,10•10-7	2,25•10-7	1,07•10-9	2,35•10-10	2,87•10-10	1,01•10-8			
i = 6	3,03•10-10	3,80•10-7	1,57•10-7	2,79•10-10	2,11•10-10	1,73•10-10	2,79•10-8			
i = 4	1,16•10-10	7,84•10-8	1,27•10-7	3,71•10-10	1,51•10-10	1,02•10-10	4,67•10-7			
i = 2	1,04-10-10	7,12-10-8	1,13-10-7	3,61-10-10	1,32-10-10	9,96•10 ⁻¹¹	4,55-10-7			
Średnia	7,79•10-10	4,99•10-8	1,63•10-7	2,82•10-8	6,35•10-10	3,50•10-9	2,0•10-7			
logk	-9,10	-7,30	-6,78	-7,55	-9,19	-8,45	-6,70			

Siatka przepływu (z wykorzystaniem programu numerycznego HYDRAULIK), w przypadku nasypów o wysokości 3,0 m i pochylenia skarp 1 : 1,5 wykazała, że maksymalny spadek hydrauliczny podczas filtracji wody jest mniejszy od 2.

Odkształcalność edometryczna. W analizach osiadania korpusów niskich nasypów istotna będzie wartość modułów przy naprężeniu ściskającym $0 \div 50$ kPa [16]. Największa wartość M_0 w przypadku tego zakresu naprężenia ściskającego występuje w materiałach na ścinanie, w porównaniu z wytrzymałością torfu, w przedziale naprężeń ścinających, tj. $\sigma_n \in (25,0 \text{ kPa}; 40,0 \text{ kPa})$. Parametry wytrzymałościowe kompozytów i torfu przedstawiono w tabeli 8, a na rysunku 5 zależność $\tau_f = \tau_f(\sigma_n)$ w przypadku naprężenia normalnego $0 \div 40$ kPa.

Największą wytrzymałością na ścinanie charakteryzuje się kompozyt C3, a najmniejszą C5, którego wytrzymałość jest porównywalna z wytrzymałością torfu. Porównując wytrzymałość na ścinanie materiałów C1, C2 i C3, tj.

Tabela 7. Wartości edometrycznych modułów ściśliwości Table 7. The oedometric compression modulus of the composites

	Kompozyt							
Zakres obciążenia [kPa]	C1	C2	C3	C4	C5	C6		
	Edometryczny moduł ściśliwości M0 [kPa]							
0 - 50	601	1036	1123	543	523	586		
50 - 100	1255	2884	2275	2364	1117	2522		
25 - 100	1053	2108	1860	1281	975	1232		
50 - 150	1438	2720	2617	2759	1283	1804		

Tabela 8. Parametry wytrzymałościowe kompozytów i torfu

Table 8. Shear strength parameters of thecomposites and the peat

Rys. 5. Wytrzymałość na ścinanie kompozytów i torfu przy naprężeniu normalnym 0 ÷ 40 kPa

Fig. 5. The shear stress of the composites and the peat for the normal stress rangefrom 0 to 40 kPa

tych, w których stosunek masy torfu do masy popiołu lotnego wynosi 1, największą wytrzymałość ma kompozyt C3, mniejszą C2 i najmniejszą C1. Może to wskazywać na istotny wpływ zawartości wapna hydratyzowanego, którego zawartość masowa w kompozytach wynosi odpowiednio 9,2, 4,8 i 2,4%. Podobną zależność można zaobserwować w kompozytach C4, C5 i C6, w których stosunek masy torfu do masy popiołu lotnego wynosi 2. Wyniki badań wskazują, że większa zawartość wapna hydratyzowanego zwiększa wytrzymałość na ścinanie.

Osiadania korpusu i stateczność. W tabeli 9 zestawiono wyniki obliczeń stateczności nasypu o wysokości 3,0 m i nachyleniu skarp 1: 1,5. Osiadanie korpusu obliczono na podstawie wzoru 2, natomiast stateczność metodą Felleniusa, korzystając z programu numerycznego

Tabela 9. Obliczona wartość osiadania kor-
pusu i wartość wskaźników stateczności
Table 9. Calculated values of embankmen

 body settlements and factor of safety

 Wielkość
 colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3">colspan="3" colspan="3" col

 stateczności [-]
 3,19
 4,89
 3,79
 3,72
 2,35
 3,93
 2,13

 * przyjęto $M_0 = 398$ kPa [18]; ** w obliczeniach nie uwzeledniono osiadania podłoża oraz przewyższenia ko

rony nasypu o 1,0 m nad poziom wody wezbraniowej

INTERsoft, Moduł – Stateczność skarp i zboczy.

Przedstawione wyniki obliczeń pokazują, że stateczność nasypów jest zapewniona niezależnie od wybranego materiału kompozytowego.

Wnioski

Wyniki badań laboratoryjnych gruntowych materiałów kompozytowych upoważniają do następujących wniosków:

• wartości współczynników filtracji materiałów kompozytowych zagęszczonych do wartości wskaźników zagęszczenia Is > 0,92 są rzędu $10^{-10} \div 10^{-6}$ m/s. Wyniki pomiarów wskazują wpływ spadku hydraulicznego na wartość współczynnika filtracji;

 do analizy przepływu wody przez korpus nasypu, w celu projektowania drenażu, zaleca się przyjąć wartość współczynnika filtracji obliczonego dla i = 2;

 edometryczne moduły ściśliwości w przypadku obciążenia ściskającego 0 ÷ 50 kPa wynoszą 523 ÷ 1123 kPa;

 wszystkie kompozyty gruntowe charakteryzują się większą wytrzymałością na ścinanie w porównaniu z wytrzymałością bazowego materiału, jakim jest torf;

 stateczność korpusu zapewniona jest bez względu na skład zastosowanego materiału kompozytowego; warunki obliczeń wg przypisu do tabeli 9; przyjmując, jako główne kryterium największego roboczego (polowego) przedziału wilgotności oraz maksymalnej wilgotności torfu do wykonania materiału kompozytowego, najbardziej przydatnym z wykonawczego punktu widzenia, jest kompozyt C6.

Literatura

 Borys M. Niskie nasypy z miejscowych gruntów organicznych dla potrzeb budownictwa wodno-melioracyjnego. Falenty. Rozprawa habilitacyjna. Instytut Melioracji i Użytków Zielonych. 1993.
 Mioduszewski W. Wybrane problemy gospodarowania wodą w rolnictwie i na wsi. Biuletyn PAN. Komitet Przestrzennego Zagospodarowania Kraju. 1992; 158: 91 – 104.

[3] Dąbek-Szreniawska M. The influence of carbon on the production of slimematerial by some azotobacterstrains. Polish J. SoilSci. 1972; 5: 59 – 67.

[4] Olszta W. Wpływ intensywnego osuszania gleb hydrogenicznych na ich właściwości retencyjne i przewodzące. Wiadomości Instytutu Melioracji i Użytków Zielonych. 1998; 19/3: 25 – 39.
[5] Zogg i in. Compositional and functional shifts in microbial communities due to soilwarming. Soil Science Society of America Journal. 1997; 61 (2).

[6] Olchawa A. Właściwości gruntowych kompozytów jako materiału do budowy obwałowań przeciwpowodziowych. Woda Środowisko Obszary Wiejskie. Instytut Melioracji i Użytków Zielonych, Rozprawy naukowe i monografie, Falenty. 2003.
[7] Karta charakterystyki. Wapno budowlane EN 459-1CL 90-S. Wapno hydratyzowane. Trzuskawica S.A.

[8] PN-86/B-02480 Grunty budowlane. Określenia symbole podział i opis gruntów.

[9] Żygadło M. Woźniak M. Obserwacje zmian właściwości popiołów poweglowych w procesach wietrzeniowych. Energetyka. 2009; 11: 771 – 715.
[10] Brzeziński B, Iskra -Świercz D. Heavy Metals and Metalloids Leachability from Composite Ground Materials Peat – Fly Ash – Lime. Rocznik Ochrony Środowiska. 2021; 23: 513 – 523; https://doi.org/10.54740/ros. 2021.036.

[11] PN-97/B-12095 Urządzenia wodno-melioracyjne. Nasypy. Wymagania i badania przy odbiorze.
[12] PN-88/B-04481 Grunty budowlane. Badania próbek gruntu.

[13] PN-EN 1997-2 Projektowanie geotechniczne.
 Część 2: Rozpoznanie i badanie podłoża gruntowego.
 [14] Czyżewski K. et al. Zapory Ziemne. 1973.
 Arkady. Warszawa str. 443.

[15] Czama A, Kowalski J, Molski T. Hydrogeologia inżynierska z podstawami gruntoznawstwa. Wydawnictwo Akademii Rolniczej we Wrocławiu. 2005.

[16] Olchawa A, Przewłócki J. Stateczność czołowego obwałowania nasypu przeciwpowodziowego jeziora Druzno. Inżynieria Morska i Geotechnika. 2013; 6: 501 – 505.

[17] Brzeziński B, Olchawa A. Wodoprzepuszczalność gruntów organicznych jako materiału konstrukcyjnego korpusów nasypów przeciwpowodziowych. Materiały Budowlane. 2017; 11: 144 – 146.

Przyjęto do druku: 08.03.2023 r.