prof. dr hab. inż. Wiesława Głodkowska¹⁾ ORCID: 0000-0003-3719-5350 dr inż. Joanna Laskowska-Bury^{1)*)} ORCID: 0000-0002-0618-1370 dr inż. Marek Lehmann¹⁾ ORCID: 0000-0002-1314-3014

Wykorzystanie zdolności pochłaniania energii do wyznaczania wytrzymałości resztkowych fibrokompozytów Using the energy absorption capacity to determine the residual strength of fibrocomposites

DOI: 10.15199/33.2023.03.01

Streszczenie. W artykule omówiono sposób wyznaczania wytrzymałości resztkowych z wykorzystaniem zdolności pochłaniania energii przez fibrokompozyt. Badania przeprowadzono przez zginanie płyt o przekroju kwadratowym podpartych przegubowo na obwodzie. Określone w ten sposób wytrzymałości resztkowe cechują się znacznie mniejszym współczynnikiem zmienności niż wyznaczone wg PN-EN 14651:2007. Opisane badanie jest alternatywą dla 3-punktowego zginania belek i pozwala na wyznaczenie tej cechy z większą wiarygodnością.

Słowa kluczowe: fibrokompozyt; włókna stalowe; zdolność pochłaniania energii; wytrzymałości resztkowe.

ibrobetony, w porównaniu z betonem zwykłym, wykazują m.in. większą odporność na działanie obciążeń dynamicznych oraz wysokiej temperatury, a ponadto charakteryzują się większą trwałością, odpornością na ścieranie i mniejszym skurczem. Dodatek włókien ma jednak największy wpływ na wytrzymałość na rozciąganie [1 - 3], ponieważ powoduje przekształcenie kruchego betonu w materiał quasi-plastyczny, który charakteryzuje się możliwością redystrybucji naprężeń rozciągających po zarysowaniu na pobliskie włókna. W wyniku działania naprężeń niszczących nie ulega on więc nagłemu pęknięciu, ale zachowuje zdolność przenoszenia obciążeń. Jest to bez wątpienia najważniejsza cecha fibrobetonu decydująca o jego przydatności w konstrukcjach. Aby skutecznie ją wykorzystać w procesie projektowania, konieczna jest znajomość zachowania się zarysowanego elementu w warunkach rozcią-

gania. Właściwość ta jest definiowana przez wytrzymałości resztkowe [4]. Zalecenia zawarte w Model Code 2010 [5], dotyczące wymiarowania elementów fibrobetonowych, powiązane są z wytrzymałościami resztkowymi określanymi wg PN-EN 14651 [6] i metody RILEM (TC-162-TDF [7]). Niestety wytrzymałości resztkowe fibrobetonu uzyskane w wyniku zginania belek charakteryzuja sie dużym rozrzutem, wynoszącym nawet ponad 30% [8 - 11]. Dzieje się tak ze względu na małe obszary załamań powstające w belkach. Zmienność tej cechy jest na tyle duża, że przyjmowany w opracowaniach statystycznych rozkład normalny może w przypadku wytrzymałości resztkowych skutkować przeprojektowywaniem elementów o ponad 30%. Dużą zmienność wytrzymałości resztkowych przypisuje się nierównomiernemu rozmieszczeniu włókien wewnątrz mieszanki betonowej, a szczególnie w miejscu nacięcia badanych próbek na zginanie [12, 13].

Duże wartości współczynników zmienności wytrzymałości resztkowych uzyskiwane w badaniach własnych [14] oraz podawane w pracach innych badaczy skło-

Abstract. The article discusses the method of determining residual strength using the energy absorption capacity of fibrecomposite. The research was carried out by bending squarecross-section plates simply supported at the perimeter. The residual strengths determined in this way are characterized by a much lower coefficient of variation than those determined using the normative method according to PN-EN 14651:2007. The described test is an alternative to 3-point bending of beams and allows to determine this feature with greater reliability. Keywords: fiber-reinforced composite; steel fibers; energy absorption ability; residual strength.

> niły nas do przeprowadzenia badań rozbudowanych o analizę centralnie zginanych płyt kwadratowych podpartych swobodnie na obwodzie. Uwzględniając, że metoda badania płyt wg PN-EN 14488-5 [15] i belek PN-EN 14651 [6] oraz kształt wykresów zależności siła obciążająca-ugięcie (F – δ) są do siebie zbliżone, założono, że badanie zdolności pochłaniania energii może być jednocześnie wykorzystywane do określania wytrzymałości resztkowych, charakteryzujących się znacznie mniejszym współczynnikiem zmienności niż w przypadku belek. Zdolność pochłaniania energii przez materiał jest obok wytrzymałości resztkowych ważną cechą określającą jego plastyczność. Właściwość tę wykorzystuje się przy projektowaniu konstrukcji z fibrobetonu, w których w wyniku działania dużych obciążeń mogłyby powstawać znaczne odkształcenia.

Metoda badań i elementy próbne

Elementy próbne wykonano z drobnokruszywowego kompozytu cementowego z dodatkiem włókien stalowych w ilości 1,2% (94 kg/m3), licząc do ob-

materialybudowlane.info.pl/science

1

¹⁾ Politechnika Koszalińska, Wydział Inżynierii

joanna.laskowska-bury@tu.koszalin.pl

jętości kompozytu. Do wykonania elementów próbnych zastosowano piasek pochodzenia polodowcowego pozyskany po procesie hydroklasyfikacji (granulacja do 4 mm) w ilości 1570 kg/m3; cement portlandzki CEM II/A-V 42,5R (420 kg/m^3) ; pył krzemionkowy (21 kg/m^3) ; superplastyfikator (16,8 kg/m³) oraz wodę z wodociągu miejskiego (160 kg/m³). Zbrojenie rozproszone stanowiły włókna stalowe o smukłości $\lambda = 1/d = 62,5$ (1 = 50 mm, d = 0.8 mm). Zawartość włókien została ustalona na podstawie wyników wcześniejszych badań kompozytów z zawartością włókien 0 - 2,5%. Zastosowany w badaniach fibrokompozyt zastrzeżony jest patentem nr 239641. Warunki wykonania próbek, ich pielęgnacji i właściwości mechaniczno-fizyczne drobnokruszywowego fibrokompozytu omówiono w [3, 16]. Celem badań doświadczalnych było wykazanie, że znajac zdolność pochłaniania energii przez materiał, można wyznaczyć wytrzymałości resztkowe przy małym współczynniku zmienności tej cechy. Badanie zdolności pochłaniania energii fibrokompozytu przeprowadzono wg PN-EN 14488-5 [15] na zginanych płytach o wymiarach 100 x 600 x 600 mm obciążonych osiowo. Płytę (zbadano 6 płyt) po 30 dniach od chwili zaformowania obciążano w sposób ciągły, tak aby nastepował kontrolowany przyrost jej ugiecia o 1±0,1 mm/min. Koniec badania następował, gdy ugięcie płyty w środku jej rozpiętości osiągało wartość 30 mm. Przyrost obciążenia, ugięcia oraz przemieszczeń na górnej i dolnej powierzchni płyty rejestrowano przy użyciu systemu akwizycji danych SAD 256 (fotografia). Dokładność czujników indukcyjnych użytych w badaniach wynosiła 1 mV/V.

Stanowisko do badania zdolności pochłaniania energii fibrokompozytu *The stand for testing the energy absorption capacity of the fiber composite*

Wyniki badań

Badanie płyt pozwoliło 140,0 na sporządzenie wykresu zależności siły obciążającej Fi ugięcia $\delta_{p, exp}$ mierzonego w środku rozpiętości płyty (rysunek 1). Zaobserwowano, że przebieg zależności 40,0 $F-\delta$ w badaniu belek jest zbliżony (rysunek 2) do uzyskanego w badaniu płyt [3, 17]. Zależność pomiędzy siłą Fa ugięciem płyty $\delta_{p, exp}$ w środku jej rozpiętości porównano z zaproponowanym przez Khaloo and Afshari [18] rów-

Rys. 3. Porównanie teoretycznej wg [18] i eksperymentalnej zależności $F - \delta_p$

Fig. 3. The theoretical according to [18] and the experimental load-deflection relation $F - \delta_n$

Rys. 1. Zależność obciążenie – ugięcie $F - \delta_{p,exp}$ płyt badanego fibrokompozytu [17]

Fig. 1. The load-deflection relation $(F - \delta_{p,exp})$ for bent slabs made from the fiber composite used in the study [17]

obciążającą F [3] Fig. 2. The relationship between the beam deflection $\delta_{b,exp}$ and the loading force F [3]

naniem opisującym zależność siła-ugięcie. Interpretację graficzną wartości uzyskanych w eksperymencie oraz obliczonych wg [18] przedstawiono na rysunku 3, z którego wynika, że objęty badaniami fibrokompozyt wykazuje większą zdolność przenoszenia obciążenia od zdolności wyznaczonej analitycznie wg [18]. Uzyskana eksperymentalna wartość siły jest w przypadku poszczególnych wartości ugięcia średnio o 35% większa od wartości teoretycznych. Na podstawie otrzymanych wyników badań określono zdolność pochłaniania energii E_n^{exp} przez płyty (tabela 1). PN-EN 14488-5 [15] definiuje ją jako pole powierzchni pod krzywa F – δ pomiedzy wartościami ugiecia $\delta_{\rm a}$ wynoszącymi odpowiednio 0 i 25 mm. Uzyskany współczynnik zmienności zdolności pochłaniania energii wynosi 6%, odchylenie standardowe 113 MP, wartość minimalna cechy 1818J, a przedział ufności 1815 ÷ 2075J.

Energię pochłoniętą przez fibrokompozyt w przypadku poszczególnych wartości ugięcia wyznaczono na podstawie wartości średniej z wykresu $F - \delta_{p,exp}$ jako pole powierzchni pod krzywą (rysunek 1). Zależność pomiędzy energią E_p^{exp} pochłoniętą przez płytę a ugięciem $\delta_{p,exp}$ w środku rozpiętości płyty pokazano na rysunku 4. Takie

przedstawienie wyników badań pozwala w prosty sposób odczytać zdolność pochłaniania energii fibrokompozytu w przypadku ugięcia 25 mm oraz energię pochłoniętą przez materiał przy wybranej wartości ugięcia, bez konieczności każdorazowego całkowania wykresu $F - \delta_{nevn}$.

Numer próbki	Maksymalna siła F _{max} [kN]	Ugięcie δ_p dla F_{max} [mm]	Energia E_p dla F_{max} [J]	Zdolność pochłaniania energii F_p^{exp} [J]		
P1	111,1	4,4	450	2084		
P2	121,4	3,0	280	1822		
Р3	116,2	3,6	330	1924		
P4	132,6	4,4	470	2102		
P5	119,4	3,4	310	1818		
P6	116,3	3,8	340	1923		
Wartość średnia	119,5	3,77	360	1945		

 Tabela 1. Wyniki badania zdolności pochłaniania energii przez płyty [17]

 Table 1. Test results of energy absorption capacity for plates [17]

Rys. 4. Zależność energii E_p^{exp} od ugięcia w środku płyty $\delta_{p,exp}$ dla badanego fibrokompozytu

Fig. 4. The relation of the energy E_p^{exp} of the deflection in the center of the plate $\delta_{p,exp}$ for the tested fiber composite

Wyznaczenie wytrzymałości resztkowych fibrokompozytu

Metoda badania płyt kwadratowych wg PN-EN 14488-5 [15] oraz sposób określania wytrzymałości resztkowych podany w PN-EN 14651 [6] polegają na badaniu elementów zginanych. Otrzymywane w rezultacie tych badań

Tabela 2. Szerokości CMOD oraz odpowiadające im ugięcia belki δ_b , $\delta_{b,exp}$ i energii zginania E_b^{exp} [3]

Table 2. The CMOD and the corresponding beam deflection values δ_{b} , $\delta_{b,exp}$ and bending energy E_{b}^{exp} [3]

Szerokość rysy [mm]	Ugięcie wg [6] [mm]	Ugięcie eksperymen- talne [mm]	Energia zgina- nia [J]	
CMOD	$\delta_{b} = 0.85 \cdot CMOD + 0.04$	$\delta_{_{b,exp}}$	${\rm E}_{\rm b}^{\rm exp}$	
0,5	0,47	0,48	11,3	
1,5	1,32 2,17	1,34	35,6	
2,5		2,17	58,3	
3,5	3,02	2,99	72,4	

zależności siły F i ugięcia δ (rysunki 1 i 2) są zbliżone, co wskazuje, że badanie zdolności pochłaniania energii wg [14] może zostać wykorzystane do wyznaczania wytrzymałości resztkowych. Powiązano zatem wytrzymałości resztkowe $f_{R, i'}$ wyznaczone dla poszczególnych wartości CMOD, z ugięciem belki δ_{hexp} oraz z energią pochłoniętą przez belkę podczas zginania E_{h}^{exp} [17]. Energię belki E_{h}^{exp} w przypadku odpowiednich wartości CMOD (tabela 2) wyznaczono na podstawie zależności obciążenie - ugięcie

 $\delta_{b,exp}$ jako pole powierzchni pod krzywą $F - \delta_{b,exp}$ (rysunek 2). Wykres $F - \delta_{b,exp}$ nie odbiega swoim kształtem i przebiegiem od wykresu obrazującego zależność F - CMOD [3], co potwierdzają wyniki przeprowadzonych obliczeń zaprezentowane w tabeli 2. Dowodzą one, że podana w normie PN-EN 14651 [6] zależność wiążąca ugięcie belki δ_b i szerokość rozwarcia rysy CMOD bardzo dobrze odzwierciedla wyniki badań własnych. Może być ona zatem wykorzystywana do dalszych analiz. Znając eksperymentalną wartość energii pochłoniętej przy zginaniu przez płytę E_p^{exp} w odniesieniu do ugięcia, z wykorzystaniem energii zginania belki E_b^{exp} w przypadku CMOD równych odpowiednio 0,5; 1,5; 2,5 oraz 3,5 mm (tabela 2), wyznaczono autorską zależność teoretyczną pomiędzy tymi energiami, a mianowicie:

$$E_b = 0,038 \cdot E_p^{exp} \tag{1}$$

Kolejnym krokiem iteracji było znalezienie takich wartości ugięcia płyty δ_n , w przypadku których po podstawieniu do wzoru (1) uzyskano teoretyczne wartości energii zginania belek δ_{μ} zbliżone do wartości eksperymentalnych E_{h}^{exp} , reprezentujących szerokość rozwarcia rysy CMOD = 0,5; 1,5; 2,5; 3,5 mm (tabela 2). W przypadku tych wartości wyznacza się wytrzymałości resztkowe $f_{R,i}$ wg PN-EN 14651 [6]. Ustalono, że poszukiwanymi wartościami ugięcia są odpowiednio: $\delta_{n} = 3,5; 10; 15; 21 \text{ mm}$ (tabela 3, kol. 1). Opisana wzorem (1) zależność umożliwia zatem wyznaczenie wartości teoretycznej energii zginania belki E_{h} (tabela 3, kol. 3) przy wyznaczonej z eksperymentu energii pochłoniętej przy zginaniu przez płytę E_{x}^{exp} (por. tabela 3, kol. 2). Z tabeli 3, kol. 3 wynika, że eksperymentalne E_{b}^{exp} i analityczne E_b wartości energii zginania belki są zbliżone. Różnice między tymi wartościami są statystycznie nieistotne. Znając teoretyczne wartości energii zginania belki E_h wyznaczono średnie wartości sił F_i (tabela 3, kol. 5), w przypadku ugięcia belki δ_{h} reprezentującego szerokość rozwarcia rysy CMOD = 0,5; 1,5; 2,5; 3,5 mm (tabela 3,

Tabela 3. Wartości energii zginania płyt E_p i belek E_b oraz ugięcia płyt δ_p i belek δ_b obliczone na podstawie zaproponowanej procedury

Table 3. Values of the bending energy of the plates E_p and beams E_b and deflection of the plates δ_p and beams δ_b calculated on the basis of the proposed procedure

Ugięcie płyty δ _p [mm]	Energia zginania płyty E _p ^{exp} [J]	Energia zginania belki [J] E _b E _b ^{exp}		Ugięcie belki δ _b [mm]/ CMOD [mm]	Siła F _j [kN]
1	2	3		4	5
3,5	343,6	13,1	11,3	0,47 / 0,5	27,8
10	977,4	37,1	35,6	1,32 / 1,5	28,1
15	1384,4	52,6	58,3	2,17 / 2,5	24,2
21	1762,8	67,5	72,4	3,02 / 3,5	22,4

kol. 4), wykorzystując zależność fizyczną opisaną wzorem (2), że energia jest zmagazynowaną pracą:

$$E_b = F_j \cdot \delta_b \tag{2}$$

Wytrzymałości resztkowe fibrokompozytu f_{R_i} , obliczono wg wzoru [9]:

$$f_{R,i} = (3 \cdot F_i \cdot l) / (2 \cdot b \cdot h_{sp}^2) \qquad (3)$$

Wartości wytrzymałości resztkowych, f_{R_i} wyznaczone z wykorzystaniem zdolności pochłaniania energii oraz na podstawie badań belek wg normy PN-EN 14651 [6], zestawiono w tabeli 4. Wartości wytrzymałości f_{R_i} obliczone z wykorzystaniem zdolności pochłaniania energii są bardzo zbliżone do uzyskanych w badaniach belek zaprezentowanych w [17], a różnice są statystycznie nieistotne. Uzyskane wartości mieszczą się w poszczególnych przedziałach ufności wyznaczonych w przypadku poziomu istotności $\alpha = 0.05$. Badania płyt pozwalają na uzyskanie wytrzymałości f_{R_i} fibrokompozytu o znacznie mniejszym współczynniku zmienności (v = 1 - 6%) niż w wyniku zginania belek (v = 13 - 17%).

to w znacznie mniejszym stopniu występuje w przypadku płyt czy elementów pełnowymiarowych. Nasza propozycja polega na powiązaniu energii pochłoniętej przez belkę podczas zginania, przy ugięciu odpowiadającym szerokości rysy CMOD, kiedy wyznacza się wytrzymałości resztkowe z energią pochłanianą przez płytę przy ekwiwalentnych ugięciach. Na podstawie ustalonej energii pochłaniania w belce określa się wartość obciążenia odpowiadającego kolejnym energiom, a następnie wytrzymałości resztkowe. Przedstawione w artykule ich badanie z wykorzystaniem centralnie zginanych płyt kwadratowych, opartych swobodnie na obwodzie, jest alternatywą dla 3-punktowego zginania belki. Zaproponowany sposób prowadzenia badania, w tym kształt próbki, ma na celu bardziej realistyczne modelowanie dwuosiowego zginania niż w przypadku belek. Mamy jednak świadomość, że przedstawiona metoda, bazująca na zdolności pochłaniania energii przez fibrokompozyt, nie jest doskonała. Planowane są dalsze prace nad udoskonaleniem tej metody,

Tabela 4. Zestawienie wytrzymałości resztkowych $f_{R,j}$ fibrokompozytu wyznaczonych z wykorzystaniem zdolności pochłaniania energii oraz w badaniu belek wg normy PN-EN 14651

Table 4. The compare of residual strengths $f_{R,j}$ of the fiber composite determined using the energy absorption capacity and in the beam test according to PN-EN 14651

	Wartości uzyskane w badaniach własnych oraz wg [6]				Wartości obliczone wg propozycji własnej		
f _{R,j} [MPa]	średnia [MPa]	s [MPa]	v [%]	przedział ufności [MPa]	średnia [MPa]	s [MPa]	v [%]
f _{R1}	9,27	1,2	13	8,82 ÷ 9,74	8,89	0,5	5
f_{R2}	8,80	1,29	15	8,30 ÷ 9,28	9,00	0,1	1
f _{R3}	7,87	1,25	15	7,39 ÷ 8,34	7,76	0,4	5
f_{R4}	6,98	1,16	17	6,53 ÷ 7,42	7,16	0,5	6

Podsumowanie

Badania centralnie zginanych płyt kwadratowych podpartych swobodnie na obwodzie wykazały, że wyniki tych badań charakteryzują się znacznie mniejszym współczynnikiem zmienności w porównaniu z wynikami belek zginanych. Różnica ta wynika z faktu, iż w badaniach belek z fibrokompozytu w zakresie pozasprężystym, na małej powierzchni ich przełomu tylko nieznaczna ilość włókien jest aktywna podczas zniszczenia. Zjawisko m.in. przez wprowadzenie odpowiednich współczynników ułatwiających opisaną procedurę.

Literatura

[1] Tiberti G, Germano F, Mudadu A, Plizzari GA. An overview of the flexural post–cracking behavior of steel fiber reinforced concrete. Struct Concr. 2017; 19: 695–718.

[2] Buratti N, Ferracuti B, Savoia M. Concrete crack reduction in tunnel linings by steel fibre–reinforced concretes. Constr Build Mater. 2013; 44: 249 – 259.

[3] Głodkowska W. Waste Sand Fiber Composite: Models of Description of Properties and Application. Annu. Set The Environ Prot. 2018; 20: 291.

[4] Giaccio G, Tobes JM, Zerbino R. Use of small beams to obtain design parameters of fibre reinforced concrete. Cem Concr Comp. 2008; 30: 297 – 306.

[5] Model Code 2010. In Final draft, fib Bulletin 66, v. 2, 2012. Comité Euro-International du Béton – Fédération International e de la Précontrainte: Paris; 2010.

[6] PN-EN 14651:2005 + A1:2007. Test Method for Metallic Fibered Concrete – Measuring the Flexural Tensile Strength (Limit or Proportionality (LOP), Residual).

[7] RILEM TC 162-TDF. Test and design methods for steel fibre reinforced concrete, σ - ϵ design method. Mater Struct. 2003; 36: 560 – 567.

[8] Yoo DY, Lee JH, Yoon YS. Effect of fiber content on mechanical and fracture properties of ultrahigh performance fiber reinforced cementitious composites. Com Struct 2013; 106: 742 – 753.

[9] Lee JH. Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Compos Struct. 2017; 168: 216 – 225.

[10] Zamanzadeh Z, Laurenco L, Barros J. Recycled steel fiber reinforced concrete failing in bending and in shear. Constr Build Mater. 2015; 85: 195 – 207.

[11] Choi WCh, Jung KY, Jang SJ, Yun HD. The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials. 2019; 12: 2105.

[12] Centonze G, Leone M, Aiello MA. Steel fibers from waste tires as reinforcement in concrete: a mechanical characterization. Constr Build Mater. 2012; 36: 46 – 57.

[13] Buratti N, Mazzotti C, Savoia M. Postcracking behaviour of steel and macro synthetic fiber-reinforced concretes. Constr Build Mater. 2011; 25: 2713 – 2722.

[14] Głodkowska W, Ziarkiewicz M, Lehmann M. Residual strength of fibre composite based on waste sand. Materiały Budowlane. 2015; 5: 75 - 77.

[15] PN-EN 14488-5: 2008. Testing sprayed concrete – Part 5: Determination of energy absorption capacity of fibre reinforced slab specimens.

[16] Lehmann M, Głodkowska W. Shear Capacity and Behaviour of Bending Reinforced Concrete Beams Made of Steel Fibre-Reinforced Waste Sand Concrete. Materials. 2021; 14: 2996.

[17] Laskowska-Bury J. Wybrane cechy fizykomechaniczne fibrokompozytu wytworzonego na bazie kruszywa odpadowego. Rozprawa doktorska. Koszalin; 2017.

[18] Khaloo AR, Afshari M. Flexural behaviour of small steel fibre reinforced concrete slabs. Cem Concr Comp. 2005; 27: 141 – 149.

Przyjęto do druku: 17.02.2023 r.